Abstract

Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons

Yihao Yang, Hongsheng Chen, Sanshui Xiao, N. Asger Mortensen, and Jingjing Zhang
Opt. Express 23(15) 19074-19081 (2015)

Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

Ying Zhang, Shaoxian Li, Quan Xu, Chunxiu Tian, Jianqiang Gu, Yanfeng Li, Zhen Tian, Chunmei Ouyang, Jiaguang Han, and Weili Zhang
Opt. Express 25(13) 14397-14405 (2017)

Terahertz spoof plasmonic coaxial microcavity

Zaihe Yu, Zhen Gao, Zhengyong Song, and Zhuoyuan Wang
Appl. Opt. 53(6) 1118-1123 (2014)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
    [Crossref]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [Crossref]
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [Crossref]
  4. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
    [Crossref]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  6. C. Huang and Y. Zhu, “Plasmonics: manipulating light at the subwavelength scale,” Act. Passive Electron. Compon. 2007, 1–13 (2007).
    [Crossref]
  7. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref]
  8. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  9. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [Crossref]
  10. T. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
    [Crossref]
  11. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S94–S101 (2005).
    [Crossref]
  12. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [Crossref]
  13. L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
    [Crossref]
  14. L. Shen, X. Chen, and T. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16, 3326–3333 (2008).
    [Crossref]
  15. L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
    [Crossref]
  16. B. You, C. Peng, J. Jhang, H. Chen, C. Yu, W. Lai, T. Liu, J. Peng, and J. Lu, “Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing,” Opt. Express 22, 11340–11350 (2014).
    [Crossref]
  17. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
    [Crossref]
  18. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
    [Crossref]
  19. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Express 34, 2063–2065 (2009).
    [Crossref]
  20. J. Y. Yin, J. Ren, H. C. Zhang, Q. Zhang, and T. J. Cui, “Capacitive-coupled series spoof surface plasmon polaritons,” Sci. Rep. 6, 24605 (2016).
    [Crossref]
  21. Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
    [Crossref]
  22. H. C. Zhang, S. Liu, X. Shen, L. Chen, L. H. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
    [Crossref]
  23. J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
    [Crossref]
  24. X. Gao, L. Zhou, and T. J. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5, 9250 (2015).
    [Crossref]
  25. Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6, 27158 (2016).
    [Crossref]
  26. Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
    [Crossref]
  27. G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15, 085031 (2013).
    [Crossref]
  28. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18, 754–764 (2010).
    [Crossref]
  29. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
    [Crossref]
  30. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88, 251120 (2006).
    [Crossref]
  31. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [Crossref]
  32. Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
    [Crossref]
  33. L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
    [Crossref]
  34. A. Kumar and S. Aditya, “Perfomance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19, 289–292 (1998).
    [Crossref]
  35. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
    [Crossref]
  36. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Design and characterization of dielectric-loaded plasmonic directional couplers,” J. Lightwave Technol. 27, 5521–5528 (2009).
    [Crossref]
  37. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970–1975 (2001).
    [Crossref]

2017 (2)

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

2016 (3)

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6, 27158 (2016).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, Q. Zhang, and T. J. Cui, “Capacitive-coupled series spoof surface plasmon polaritons,” Sci. Rep. 6, 24605 (2016).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

2015 (5)

H. C. Zhang, S. Liu, X. Shen, L. Chen, L. H. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

X. Gao, L. Zhou, and T. J. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5, 9250 (2015).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
[Crossref]

2014 (2)

B. You, C. Peng, J. Jhang, H. Chen, C. Yu, W. Lai, T. Liu, J. Peng, and J. Lu, “Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing,” Opt. Express 22, 11340–11350 (2014).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

2013 (1)

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15, 085031 (2013).
[Crossref]

2010 (1)

2009 (3)

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Design and characterization of dielectric-loaded plasmonic directional couplers,” J. Lightwave Technol. 27, 5521–5528 (2009).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Express 34, 2063–2065 (2009).
[Crossref]

2008 (6)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

L. Shen, X. Chen, and T. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16, 3326–3333 (2008).
[Crossref]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

2007 (3)

C. Huang and Y. Zhu, “Plasmonics: manipulating light at the subwavelength scale,” Act. Passive Electron. Compon. 2007, 1–13 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

2006 (4)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]

T. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[Crossref]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88, 251120 (2006).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref]

2005 (2)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S94–S101 (2005).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[Crossref]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

2001 (1)

1998 (1)

A. Kumar and S. Aditya, “Perfomance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19, 289–292 (1998).
[Crossref]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Aditya, S.

A. Kumar and S. Aditya, “Perfomance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19, 289–292 (1998).
[Crossref]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88, 251120 (2006).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Bartoli, F. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

Bozhevolnyi, S. I.

Chen, C.

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6, 27158 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
[Crossref]

Chen, H.

Chen, L.

H. C. Zhang, S. Liu, X. Shen, L. Chen, L. H. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

Chen, X.

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
[Crossref]

L. Shen, X. Chen, and T. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16, 3326–3333 (2008).
[Crossref]

Chen, Z.

Cui, T. J.

J. Y. Yin, J. Ren, H. C. Zhang, Q. Zhang, and T. J. Cui, “Capacitive-coupled series spoof surface plasmon polaritons,” Sci. Rep. 6, 24605 (2016).
[Crossref]

H. C. Zhang, S. Liu, X. Shen, L. Chen, L. H. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

X. Gao, L. Zhou, and T. J. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5, 9250 (2015).
[Crossref]

Dereux, A.

Ding, Y. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Fernandez-Dominguez, A. I.

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Express 34, 2063–2065 (2009).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

Gan, Q.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

Gao, X.

X. Gao, L. Zhou, and T. J. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5, 9250 (2015).
[Crossref]

Garcia-Vidal, F. J.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18, 754–764 (2010).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S94–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref]

García-Vidal, F. J.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Express 34, 2063–2065 (2009).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

Grischkowsky, D.

T. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[Crossref]

Gu, C.

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6, 27158 (2016).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Hayashi, A.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

Hayashi, S.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

Holmgaard, T.

Huang, C.

C. Huang and Y. Zhu, “Plasmonics: manipulating light at the subwavelength scale,” Act. Passive Electron. Compon. 2007, 1–13 (2007).
[Crossref]

Jadidi, M. M.

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15, 085031 (2013).
[Crossref]

Jeon, T.

T. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[Crossref]

Jhang, J.

Kato, E.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

Kawai, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

Kawase, K.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

Koshiba, M.

Krasavin, A. V.

Kumar, A.

A. Kumar and S. Aditya, “Perfomance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19, 289–292 (1998).
[Crossref]

Kumar, G.

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15, 085031 (2013).
[Crossref]

Lai, W.

Li, L. H.

H. C. Zhang, S. Liu, X. Shen, L. Chen, L. H. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

Li, S.

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15, 085031 (2013).
[Crossref]

Li, Z.

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6, 27158 (2016).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Liu, L.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6, 27158 (2016).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Liu, S.

H. C. Zhang, S. Liu, X. Shen, L. Chen, L. H. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

Liu, T.

Liu, Y.

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
[Crossref]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

Lu, J.

Luo, Y.

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88, 251120 (2006).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[Crossref]

Markey, L.

Martin-Cano, D.

Martin-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18, 754–764 (2010).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S94–S101 (2005).
[Crossref]

Martín-Moreno, L.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Express 34, 2063–2065 (2009).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref]

Miyamaru, F.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

Moreno, E.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18, 754–764 (2010).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Express 34, 2063–2065 (2009).
[Crossref]

Murphy, T. E.

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15, 085031 (2013).
[Crossref]

Nesterov, M. L.

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Ning, P.

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Niu, Z.

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Ogawa, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

Otani, C.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]

Pan, B. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S94–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref]

Peng, C.

Peng, J.

Qing, Q.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

Ren, J.

J. Y. Yin, J. Ren, H. C. Zhang, Q. Zhang, and T. J. Cui, “Capacitive-coupled series spoof surface plasmon polaritons,” Sci. Rep. 6, 24605 (2016).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

Shen, L.

Shen, X.

H. C. Zhang, S. Liu, X. Shen, L. Chen, L. H. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

Shum, P.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Sun, H.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
[Crossref]

Sun, Y.

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
[Crossref]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

Xu, B.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6, 27158 (2016).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Xu, J.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6, 27158 (2016).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

Yan, J.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
[Crossref]

Yang, T.

Yin, J. Y.

J. Y. Yin, J. Ren, H. C. Zhang, Q. Zhang, and T. J. Cui, “Capacitive-coupled series spoof surface plasmon polaritons,” Sci. Rep. 6, 24605 (2016).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

Yoshida, H.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

You, B.

Yu, C.

Zayats, A. V.

Zhang, H. C.

J. Y. Yin, J. Ren, H. C. Zhang, Q. Zhang, and T. J. Cui, “Capacitive-coupled series spoof surface plasmon polaritons,” Sci. Rep. 6, 24605 (2016).
[Crossref]

H. C. Zhang, S. Liu, X. Shen, L. Chen, L. H. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

Zhang, Q.

J. Y. Yin, J. Ren, H. C. Zhang, Q. Zhang, and T. J. Cui, “Capacitive-coupled series spoof surface plasmon polaritons,” Sci. Rep. 6, 24605 (2016).
[Crossref]

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

Zhao, Y.

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40, 1810–1813 (2015).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Zhou, L.

X. Gao, L. Zhou, and T. J. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5, 9250 (2015).
[Crossref]

Zhou, Y.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6, 27158 (2016).
[Crossref]

Zhu, Y.

C. Huang and Y. Zhu, “Plasmonics: manipulating light at the subwavelength scale,” Act. Passive Electron. Compon. 2007, 1–13 (2007).
[Crossref]

Act. Passive Electron. Compon. (1)

C. Huang and Y. Zhu, “Plasmonics: manipulating light at the subwavelength scale,” Act. Passive Electron. Compon. 2007, 1–13 (2007).
[Crossref]

AIP Adv. (1)

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5, 027105 (2015).
[Crossref]

Appl. Phys. Lett. (4)

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88, 251120 (2006).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[Crossref]

T. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65, 2008–2018 (2017).
[Crossref]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. A (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S94–S101 (2005).
[Crossref]

Laser Photon. Rev. (1)

H. C. Zhang, S. Liu, X. Shen, L. Chen, L. H. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photon. Rev. 9, 83–90 (2015).
[Crossref]

Microw. Opt. Technol. Lett. (1)

A. Kumar and S. Aditya, “Perfomance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19, 289–292 (1998).
[Crossref]

Nat. Mater. (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

New J. Phys. (1)

G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15, 085031 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Appl. (1)

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7, 044028 (2017).
[Crossref]

Phys. Rev. B (1)

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

Phys. Rev. Lett. (2)

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[Crossref]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Sci. Rep. (5)

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref]

X. Gao, L. Zhou, and T. J. Cui, “Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial,” Sci. Rep. 5, 9250 (2015).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6, 27158 (2016).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, Q. Zhang, and T. J. Cui, “Capacitive-coupled series spoof surface plasmon polaritons,” Sci. Rep. 6, 24605 (2016).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-contrast gratings based spoof surface plasmons,” Sci. Rep. 6, 21199 (2016).
[Crossref]

Science (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Illustration of the experimental setup. The inset shows a schematic of the waveguide structure with the following geometrical parameters: the period p, the width w, the length l, and the depth h of the pillar. (b) Dispersion relation of the SPP mode for one row (red line) of metal pillars. The inset is the normalized field magnitude of the electric field component (Ez) for the yz cross section of a single-row waveguide at 0.63 THz. The dashed line indicates the boundary between metal and air.
Fig. 2.
Fig. 2. (a) SEM image of the straight waveguide. (b) Near-field image of the straight waveguide. The normalized power |Ez|2 distribution at 0.58 THz is shown. (c) Amplitude attenuation as a function of propagation distance. Blue dots represent experimental results, and the solid line is the exponential fit. (d) Measured electric field amplitude along the line x=3  mm, showing the horizontal confinement. (e) Amplitude as a function of increasing z. The red dots are experimental results, and the solid line is the exponential fit.
Fig. 3.
Fig. 3. (a) Schematic of S-bend and Y-splitter waveguides. Near-field images corresponding to (b) S-bend and (c) Y-splitter waveguides. The normalized power |Ez|2 distribution at 0.58 THz is shown. (d) Measured amplitude of the electric field as a function of the y coordinate along the lines x=0  mm (input) and x=3  mm (output) of the Y-splitter.
Fig. 4.
Fig. 4. (a) Schematic of the DC with relevant parameters. (b) Normalized electric component (Ez) distribution for the yz cross section of even (upper) and odd modes (lower) supported by two parallel waveguides. (c) Dispersion relation of even and odd modes for DCs with varying g. (d) Calculated coupling length for DCs with different g values of 115, 90, 70, and 50 μm.
Fig. 5.
Fig. 5. (a)–(d) Normalized power distributions for DCs at 0.6 THz. (e)–(h) Field amplitudes of cross sections at the input (line x=0  mm) and end of straight waveguides (line x=2.8  mm) corresponding to DCs with g=115, 90, 70, and 50 μm from left to right, respectively. Lines x=0  mm and x=2.8  mm are represented as dotted lines in (a)–(d).

Metrics