Abstract

We investigate the localized surface plasmon (LSP) effect by Al nanorings on the AlGaN/GaN multiple quantum well (MQW) structure emitting at 365 nm. For this experiment, first, the size of Al nanorings is optimized to maximize the energy transfer (or coupling) between the LSP and MQW using the silica nanospheres. Then, the Al nanorings with an outer diameter of 385 nm, which exhibit a strong absorption peak in the near-ultraviolet region, are applied to the top surface of the AlGaN/GaN MQW. The photoluminescence (PL) intensity of the MQW structure with Al nanorings increased by 227% at 365 nm compared to that without Al nanorings. This improvement is mainly attributed to an enhanced radiative recombination rate in the MQWs through the energy-matched LSPs by the temperature-dependent PL and time-resolved PL analyses. The radiative lifetime was about two times shorter than that of the structure without Al nanorings at room temperature. In addition, the measured PL efficiency at room temperature of the structure with Al nanorings was 33%, while that of the structure without Al nanorings was 19%, implying that LSP-QW coupling together with the nanoring array pattern itself played important roles in the enhancement.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Localized surface plasmon enhanced quantum efficiency of InGaN/GaN quantum wells by Ag/SiO2 nanoparticles

Lee-Woon Jang, Dae-Woo Jeon, Trilochan Sahoo, Dong-Seob Jo, Jin-Woo Ju, Seung-jae Lee, Jong-Hyeob Baek, Jin-Kyu Yang, Jung-Hoon Song, Alexander Y. Polyakov, and In-Hwan Lee
Opt. Express 20(3) 2116-2123 (2012)

Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure

Weiying Wang, Huimin Lu, Lei Fu, Chenguang He, Mingxing Wang, Ning Tang, Fujun Xu, Tongjun Yu, Weikun Ge, and Bo Shen
Opt. Express 24(16) 18176-18183 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, N. Yeh, C.-H. Lee, and T.-J. Ding, “Applications of LEDs in optical sensors and chemical sensing device for detection of biochemical, heavy metals, and environmental nutrients,” Renew. Sustain. Energy Rev. 75, 461–468 (2017).
    [Crossref]
  2. H.-Y. Lin, C.-W. Sher, D.-H. Hsieh, X.-Y. Chen, H.-M. P. Chen, T.-M. Chen, K.-M. Lau, C.-H. Chen, C.-C. Lin, and H.-C. Kuo, “Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diodes display by a lithographic-fabricated photoresist mold,” Photon. Res. 5, 411–416 (2017).
    [Crossref]
  3. K. Song, M. Mohseni, and F. Taghipour, “Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review,” Water Res. 94, 341–349 (2016).
    [Crossref]
  4. Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29, 084004 (2014).
    [Crossref]
  5. M. Krames and N. Grandjean, “Light-emitting diodes technology and applications: introduction,” Photon. Res. 5, LED1–LED2 (2017).
  6. J. S. Speck and S. J. Rosner, “The role of threading dislocations in the physical properties of GaN and its alloys,” Physica B 273–274, 24–32 (1999).
    [Crossref]
  7. T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
    [Crossref]
  8. N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, and J. Massies, “Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells,” J. Appl. Phys. 86, 3714–3720 (1999).
    [Crossref]
  9. A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, “High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates,” Appl. Phys. Lett. 106, 142107 (2015).
    [Crossref]
  10. F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
    [Crossref]
  11. E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
    [Crossref]
  12. T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
    [Crossref]
  13. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
    [Crossref]
  14. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
    [Crossref]
  15. S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26, 385204 (2015).
    [Crossref]
  16. K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
    [Crossref]
  17. J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
    [Crossref]
  18. C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
    [Crossref]
  19. S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, “Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90  mW output power via an AlN hybrid nanostructure,” Appl. Phys. Lett. 106, 131104 (2015).
    [Crossref]
  20. S.-I. Inoue, N. Tamari, and M. Taniguchi, “150  mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonics light-extraction structure emitting at 265  nm,” Appl. Phys. Lett. 110, 141106 (2017).
    [Crossref]
  21. Q.-A. Ding, K. Li, F. Kong, J. Zhao, and Q. Yue, “Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonics crystals,” IEEE J. Quantum Electron. 51, 3300109 (2015).
    [Crossref]
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [Crossref]
  23. P. Nordlander, “The ring: a leitmotif in plasmonics,” ACS Nano 3, 488–492 (2009).
    [Crossref]
  24. J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
    [Crossref]
  25. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
    [Crossref]
  26. Z. Bai, G. Tao, Y. Li, J. He, K. Wang, G. Wang, X. Jiang, J. Wang, W. Blau, and L. Zhang, “Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays,” Photon. Res. 5, 280–286 (2017).
    [Crossref]
  27. E. Prodan and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352, 140–146 (2002).
    [Crossref]
  28. S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
    [Crossref]
  29. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370–1372 (1998).
    [Crossref]
  30. W. F. Yang, Y. N. Xie, R. Y. Liao, J. Sun, Z. Y. Wu, L. M. Wong, S. J. Wang, C. F. Wang, A. Y. S. Lee, and H. Gong, “Enhancement of bandgap emission of Pt-capped MgZnO films: important role of light extraction versus exciton-plasmon coupling,” Opt. Express 20, 14556–14563 (2012).
    [Crossref]

2017 (8)

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

S.-I. Inoue, N. Tamari, and M. Taniguchi, “150  mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonics light-extraction structure emitting at 265  nm,” Appl. Phys. Lett. 110, 141106 (2017).
[Crossref]

P. Yeh, N. Yeh, C.-H. Lee, and T.-J. Ding, “Applications of LEDs in optical sensors and chemical sensing device for detection of biochemical, heavy metals, and environmental nutrients,” Renew. Sustain. Energy Rev. 75, 461–468 (2017).
[Crossref]

M. Krames and N. Grandjean, “Light-emitting diodes technology and applications: introduction,” Photon. Res. 5, LED1–LED2 (2017).

Z. Bai, G. Tao, Y. Li, J. He, K. Wang, G. Wang, X. Jiang, J. Wang, W. Blau, and L. Zhang, “Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays,” Photon. Res. 5, 280–286 (2017).
[Crossref]

H.-Y. Lin, C.-W. Sher, D.-H. Hsieh, X.-Y. Chen, H.-M. P. Chen, T.-M. Chen, K.-M. Lau, C.-H. Chen, C.-C. Lin, and H.-C. Kuo, “Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diodes display by a lithographic-fabricated photoresist mold,” Photon. Res. 5, 411–416 (2017).
[Crossref]

2016 (1)

K. Song, M. Mohseni, and F. Taghipour, “Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review,” Water Res. 94, 341–349 (2016).
[Crossref]

2015 (5)

Q.-A. Ding, K. Li, F. Kong, J. Zhao, and Q. Yue, “Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonics crystals,” IEEE J. Quantum Electron. 51, 3300109 (2015).
[Crossref]

S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, “Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90  mW output power via an AlN hybrid nanostructure,” Appl. Phys. Lett. 106, 131104 (2015).
[Crossref]

S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26, 385204 (2015).
[Crossref]

E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
[Crossref]

A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, “High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates,” Appl. Phys. Lett. 106, 142107 (2015).
[Crossref]

2014 (3)

K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
[Crossref]

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29, 084004 (2014).
[Crossref]

2013 (1)

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

2012 (1)

2009 (1)

P. Nordlander, “The ring: a leitmotif in plasmonics,” ACS Nano 3, 488–492 (2009).
[Crossref]

2008 (1)

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

2002 (1)

E. Prodan and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352, 140–146 (2002).
[Crossref]

2001 (2)

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

1999 (2)

N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, and J. Massies, “Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells,” J. Appl. Phys. 86, 3714–3720 (1999).
[Crossref]

J. S. Speck and S. J. Rosner, “The role of threading dislocations in the physical properties of GaN and its alloys,” Physica B 273–274, 24–32 (1999).
[Crossref]

1998 (2)

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370–1372 (1998).
[Crossref]

AJia, I. A.

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

Alcaraz de la Osa, R.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

Bai, Z.

Blau, W.

Brown, A. S.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

Bryan, A.

A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, “High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates,” Appl. Phys. Lett. 106, 142107 (2015).
[Crossref]

Bryan, I.

A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, “High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates,” Appl. Phys. Lett. 106, 142107 (2015).
[Crossref]

Byeon, C. C.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Chen, C.

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Chen, C.-H.

Chen, H.-M. P.

Chen, S.

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Chen, T.-M.

Chen, X.

K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
[Crossref]

Chen, X.-Y.

Chen, Y.

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Chichibu, S. F.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Cho, C.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Cho, Y.-H.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370–1372 (1998).
[Crossref]

Cohen, D. A.

E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
[Crossref]

Collazo, R.

A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, “High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates,” Appl. Phys. Lett. 106, 142107 (2015).
[Crossref]

Dai, J.

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Damasso, S.

N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, and J. Massies, “Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells,” J. Appl. Phys. 86, 3714–3720 (1999).
[Crossref]

Damilano, B.

N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, and J. Massies, “Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells,” J. Appl. Phys. 86, 3714–3720 (1999).
[Crossref]

DenBaars, S. P.

E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
[Crossref]

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370–1372 (1998).
[Crossref]

Ding, Q.-A.

Q.-A. Ding, K. Li, F. Kong, J. Zhao, and Q. Yue, “Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonics crystals,” IEEE J. Quantum Electron. 51, 3300109 (2015).
[Crossref]

Ding, T.-J.

P. Yeh, N. Yeh, C.-H. Lee, and T.-J. Ding, “Applications of LEDs in optical sensors and chemical sensing device for detection of biochemical, heavy metals, and environmental nutrients,” Renew. Sustain. Energy Rev. 75, 461–468 (2017).
[Crossref]

Everitt, H. O.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

Fang, Y.

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Feng, Z. C.

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

Fischer, A. J.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370–1372 (1998).
[Crossref]

Fu, L.

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

Gainer, G. H.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370–1372 (1998).
[Crossref]

Gao, N.

K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
[Crossref]

Ge, W.

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

Gong, H.

Gonzalez, F.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

Grandjean, N.

M. Krames and N. Grandjean, “Light-emitting diodes technology and applications: introduction,” Photon. Res. 5, LED1–LED2 (2017).

N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, and J. Massies, “Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells,” J. Appl. Phys. 86, 3714–3720 (1999).
[Crossref]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Hao, M.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

He, J.

Hirayama, H.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

Hong, S.-H.

S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26, 385204 (2015).
[Crossref]

Hsieh, D.-H.

Huang, K.

K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
[Crossref]

Inoue, S.-I.

S.-I. Inoue, N. Tamari, and M. Taniguchi, “150  mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonics light-extraction structure emitting at 265  nm,” Appl. Phys. Lett. 110, 141106 (2017).
[Crossref]

S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, “Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90  mW output power via an AlN hybrid nanostructure,” Appl. Phys. Lett. 106, 131104 (2015).
[Crossref]

Ishida, Y.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Jiang, X.

Jin, P.

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Jung, Y.-S.

S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26, 385204 (2015).
[Crossref]

Kang, J.

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
[Crossref]

Kang, J.-W.

S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26, 385204 (2015).
[Crossref]

Keller, S.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370–1372 (1998).
[Crossref]

Kim, B.-H.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Kim, D.-Y.

S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26, 385204 (2015).
[Crossref]

Kim, J.-J.

S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26, 385204 (2015).
[Crossref]

Kim, J.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Kimura, M.

Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29, 084004 (2014).
[Crossref]

Kinoshita, T.

S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, “Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90  mW output power via an AlN hybrid nanostructure,” Appl. Phys. Lett. 106, 131104 (2015).
[Crossref]

Kitamura, T.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Kong, F.

Q.-A. Ding, K. Li, F. Kong, J. Zhao, and Q. Yue, “Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonics crystals,” IEEE J. Quantum Electron. 51, 3300109 (2015).
[Crossref]

Krames, M.

Kuo, H.-C.

Kurai, S.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Kuroda, T.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Kwon, M.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Lau, K.-M.

Laugt, M.

N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, and J. Massies, “Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells,” J. Appl. Phys. 86, 3714–3720 (1999).
[Crossref]

Lee, A. Y. S.

Lee, C.-H.

P. Yeh, N. Yeh, C.-H. Lee, and T.-J. Ding, “Applications of LEDs in optical sensors and chemical sensing device for detection of biochemical, heavy metals, and environmental nutrients,” Renew. Sustain. Energy Rev. 75, 461–468 (2017).
[Crossref]

Leroux, M.

N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, and J. Massies, “Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells,” J. Appl. Phys. 86, 3714–3720 (1999).
[Crossref]

Li, J.

K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
[Crossref]

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Li, K.

Q.-A. Ding, K. Li, F. Kong, J. Zhao, and Q. Yue, “Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonics crystals,” IEEE J. Quantum Electron. 51, 3300109 (2015).
[Crossref]

Li, S.

K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
[Crossref]

Li, W.

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Li, X.

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

Li, Y.

Z. Bai, G. Tao, Y. Li, J. He, K. Wang, G. Wang, X. Jiang, J. Wang, W. Blau, and L. Zhang, “Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays,” Photon. Res. 5, 280–286 (2017).
[Crossref]

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Liao, R. Y.

Lin, C.-C.

Lin, H.-Y.

Losurdo, M.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

Massies, J.

N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, and J. Massies, “Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells,” J. Appl. Phys. 86, 3714–3720 (1999).
[Crossref]

Mino, T.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

Mishra, U. K.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370–1372 (1998).
[Crossref]

Mita, S.

A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, “High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates,” Appl. Phys. Lett. 106, 142107 (2015).
[Crossref]

Mohseni, M.

K. Song, M. Mohseni, and F. Taghipour, “Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review,” Water Res. 94, 341–349 (2016).
[Crossref]

Moreno, F.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Muramoto, Y.

Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29, 084004 (2014).
[Crossref]

Nakamura, S.

E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
[Crossref]

Nakanishi, H.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Naoi, Y.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Naoki, T.

S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, “Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90  mW output power via an AlN hybrid nanostructure,” Appl. Phys. Lett. 106, 131104 (2015).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Nishino, K.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Noguchi, N.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

Nordlander, P.

P. Nordlander, “The ring: a leitmotif in plasmonics,” ACS Nano 3, 488–492 (2009).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

E. Prodan and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352, 140–146 (2002).
[Crossref]

Nouda, S.

Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29, 084004 (2014).
[Crossref]

Obata, T.

S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, “Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90  mW output power via an AlN hybrid nanostructure,” Appl. Phys. Lett. 106, 131104 (2015).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Okumura, H.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Onuma, T.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Ortiz, D.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

Park, I.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Park, S.-J.

S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26, 385204 (2015).
[Crossref]

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

E. Prodan and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352, 140–146 (2002).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Romano, L. T.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Roqan, I. S.

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

Rosner, S. J.

J. S. Speck and S. J. Rosner, “The role of threading dislocations in the physical properties of GaN and its alloys,” Physica B 273–274, 24–32 (1999).
[Crossref]

Saifaddin, B. K.

E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
[Crossref]

Saiz, J. M.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

Sakai, J.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

Sakai, S.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Sanz, J. M.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

Sato, H.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Shang, L.

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

Shen, B.

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

Sher, C.-W.

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Sitar, Z.

A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, “High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates,” Appl. Phys. Lett. 106, 142107 (2015).
[Crossref]

Song, J. J.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370–1372 (1998).
[Crossref]

Song, K.

K. Song, M. Mohseni, and F. Taghipour, “Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review,” Water Res. 94, 341–349 (2016).
[Crossref]

Sota, T.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Speck, J. S.

E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
[Crossref]

J. S. Speck and S. J. Rosner, “The role of threading dislocations in the physical properties of GaN and its alloys,” Physica B 273–274, 24–32 (1999).
[Crossref]

Sugahara, T.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Sugiyama, M.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Sun, H.

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

Sun, J.

Tackeuchi, A.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Taghipour, F.

K. Song, M. Mohseni, and F. Taghipour, “Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review,” Water Res. 94, 341–349 (2016).
[Crossref]

Takano, T.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

Tamari, N.

S.-I. Inoue, N. Tamari, and M. Taniguchi, “150  mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonics light-extraction structure emitting at 265  nm,” Appl. Phys. Lett. 110, 141106 (2017).
[Crossref]

Tang, N.

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

Taniguchi, M.

S.-I. Inoue, N. Tamari, and M. Taniguchi, “150  mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonics light-extraction structure emitting at 265  nm,” Appl. Phys. Lett. 110, 141106 (2017).
[Crossref]

Tao, G.

Tottori, S.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Tsubaki, K.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

Van Duyne, R. P.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

Wang, C.

K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
[Crossref]

Wang, C. F.

Wang, G.

Wang, J.

Wang, K.

Wang, S. J.

Wang, W.

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

Wang, X.

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

Wong, L. M.

Wu, F.

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
[Crossref]

Wu, Z.

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Wu, Z. Y.

Xie, J.

A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, “High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates,” Appl. Phys. Lett. 106, 142107 (2015).
[Crossref]

Xie, Y. N.

Xu, F.

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

Yamashita, K.

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Yanagi, H.

S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, “Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90  mW output power via an AlN hybrid nanostructure,” Appl. Phys. Lett. 106, 131104 (2015).
[Crossref]

Yang, W. F.

Yang, X.

K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
[Crossref]

Yeh, N.

P. Yeh, N. Yeh, C.-H. Lee, and T.-J. Ding, “Applications of LEDs in optical sensors and chemical sensing device for detection of biochemical, heavy metals, and environmental nutrients,” Renew. Sustain. Energy Rev. 75, 461–468 (2017).
[Crossref]

Yeh, P.

P. Yeh, N. Yeh, C.-H. Lee, and T.-J. Ding, “Applications of LEDs in optical sensors and chemical sensing device for detection of biochemical, heavy metals, and environmental nutrients,” Renew. Sustain. Energy Rev. 75, 461–468 (2017).
[Crossref]

Yim, S.-Y.

S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26, 385204 (2015).
[Crossref]

Yin, J.

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Yonkee, B. P.

E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
[Crossref]

Young, E. C.

E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
[Crossref]

Yue, Q.

Q.-A. Ding, K. Li, F. Kong, J. Zhao, and Q. Yue, “Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonics crystals,” IEEE J. Quantum Electron. 51, 3300109 (2015).
[Crossref]

Zhang, C.

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

Zhang, D.

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

Zhang, L.

Zhao, J.

Q.-A. Ding, K. Li, F. Kong, J. Zhao, and Q. Yue, “Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonics crystals,” IEEE J. Quantum Electron. 51, 3300109 (2015).
[Crossref]

ACS Nano (1)

P. Nordlander, “The ring: a leitmotif in plasmonics,” ACS Nano 3, 488–492 (2009).
[Crossref]

Adv. Mater. (1)

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Adv. Opt. Mater. (1)

J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, and C. Chen, “Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells,” Adv. Opt. Mater. 2, 451–458 (2014).
[Crossref]

Appl. Phys. Express (1)

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
[Crossref]

Appl. Phys. Lett. (5)

A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, “High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates,” Appl. Phys. Lett. 106, 142107 (2015).
[Crossref]

S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, “Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90  mW output power via an AlN hybrid nanostructure,” Appl. Phys. Lett. 106, 131104 (2015).
[Crossref]

S.-I. Inoue, N. Tamari, and M. Taniguchi, “150  mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonics light-extraction structure emitting at 265  nm,” Appl. Phys. Lett. 110, 141106 (2017).
[Crossref]

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79, 4319–4321 (2001).
[Crossref]

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370–1372 (1998).
[Crossref]

Chem. Phys. Lett. (1)

E. Prodan and P. Nordlander, “Electronic structure and polarizability of metallic nanoshells,” Chem. Phys. Lett. 352, 140–146 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

Q.-A. Ding, K. Li, F. Kong, J. Zhao, and Q. Yue, “Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonics crystals,” IEEE J. Quantum Electron. 51, 3300109 (2015).
[Crossref]

J. Appl. Phys. (1)

N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, and J. Massies, “Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells,” J. Appl. Phys. 86, 3714–3720 (1999).
[Crossref]

J. Cryst. Growth (1)

E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers,” J. Cryst. Growth 425, 389–392 (2015).
[Crossref]

J. Phys. Chem. B (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

J. Phys. Chem. C (1)

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117, 19606–19615 (2013).
[Crossref]

J. Phys. D (1)

F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, and X. Li, “Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design,” J. Phys. D 50, 245101 (2017).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Jpn. J. Appl. Phys. 37, L398–L400 (1998).
[Crossref]

Nanotechnology (1)

S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, and S.-J. Park, “Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles,” Nanotechnology 26, 385204 (2015).
[Crossref]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Opt. Express (1)

Photon. Res. (3)

Physica B (1)

J. S. Speck and S. J. Rosner, “The role of threading dislocations in the physical properties of GaN and its alloys,” Physica B 273–274, 24–32 (1999).
[Crossref]

Renew. Sustain. Energy Rev. (1)

P. Yeh, N. Yeh, C.-H. Lee, and T.-J. Ding, “Applications of LEDs in optical sensors and chemical sensing device for detection of biochemical, heavy metals, and environmental nutrients,” Renew. Sustain. Energy Rev. 75, 461–468 (2017).
[Crossref]

Sci. Rep. (2)

K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
[Crossref]

C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Sci. Rep. 7, 2358 (2017).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Semicond. Sci. Technol. (1)

Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29, 084004 (2014).
[Crossref]

Water Res. (1)

K. Song, M. Mohseni, and F. Taghipour, “Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review,” Water Res. 94, 341–349 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematics of the processing steps used to fabricate Al nanoring arrays using SiO2 nanospheres. (b)–(d) SEM images showing top views of Al nanoring arrays fabricated using SiO2 nanospheres with diameters of 150, 300, and 450 nm, respectively. (e)–(g) Experimental absorbance spectra of the Al nanorings with outer diameters of 165, 385, and 520 nm, respectively.

Fig. 2.
Fig. 2.

(a) Schematic of the AlGaN/GaN-based near-UV LED structure with Al nanorings to capture both AFM and TEM images. (b) AFM image of the top surface of the near-UV LED with 385 nm Al nanorings that have an HCP array structure and height distribution. (c) STEM cross-sectional image of the AlGaN/GaN-based near-UV LED with Al nanorings and (d) the corresponding EDS mapping image of Al element (green color).

Fig. 3.
Fig. 3.

3D FDTD simulations of the Al nanoring array, which has an HCP structure with outer diameters of 385 nm, plasmonic system. (a) Schematic of the simulated Al nanoring array–HCP unit cell structure. (b) Simulated absorbance spectra of the Al nanoring array with an HCP unit cell on the glass substrate, when the incident light was both TE and TM polarized. Top views of the local electric field distributions of Al nanorings with HCP unit cell on the Al0.1Ga0.9N substrate, when using dipole modes of (c) TE and (d) TM at z=0  nm, and (e) TE at z=16  nm, respectively, at 365 nm. (f) Intensity profile of the magnetic field at 365 nm.

Fig. 4.
Fig. 4.

(a) Power-dependent PL measurements with source power of 0.03, 0.1, 0.5, 2, and 8 mW from bottom to top. (b) Time-resolved PL spectra of the AlGaN/GaN MQW structure with and without Al nanorings at room temperature.

Fig. 5.
Fig. 5.

(a) Temporal evolution of MQW emissions obtained at different temperatures for AlGaN/GaN MQW samples with and without Al nanoring structures. For both samples, temporal curves are normalized and vertically shifted for comparison. Measured PL lifetime τm and radiative and nonradiative lifetimes (τr and τnr) (b) without Al nanorings and (c) with Al nanorings inferred from the temperature-dependent time-resolved PL result and integrated PL intensity.

Fig. 6.
Fig. 6.

TDPL measurements. PL spectra of AlGaN/GaN MQW structures (a) without Al nanorings (b) with Al nanorings at temperatures from 12 to 300 K. (c) Arrhenius plot of the normalized integrated PL intensities for AlGaN/GaN MQWs with and without Al nanorings.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z=λ/(2π)[(ϵsϵm)/ϵm2]1/2,
1/τm=1/τr+1/τnr,
ηint(T)=τm(T)/τr(T)=1/[1+τr(T)/τnr(T)],
ηPL(T)=I(T)/I12K.

Metrics