Abstract

Single-longitudinal-mode operation with single-wavelength emission at 1319 nm and dual-wavelength emission at 1319 and 1338 nm is realized by utilizing two types of coating specification for monolithic Nd:YAG lasers. Each longitudinal mode consists of two orthogonally polarized modes. Experimental results reveal that the frequency splitting between two orthogonal polarizations can be tuned by changing the external mechanical force applied on the Nd:YAG crystal. The beat frequency can be linearly varied from 181.3 MHz to 1.64 GHz. The beat frequencies between two orthogonally polarized modes at 1319 and 1338 nm are found to be very close, and their difference can be changed from 4.5 to 19.9 MHz by increasing the external mechanical force from 1.6 to 15 N.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser

Lei Guo, Ruijun Lan, Hong Liu, Haohai Yu, Huaijin Zhang, Jiyang Wang, Dawei Hu, Shidong Zhuang, Lijuan Chen, Yongguang Zhao, Xinguang Xu, and Zhengping Wang
Opt. Express 18(9) 9098-9106 (2010)

Dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm by direct pumping at 885  nm

Bin Lin, Kun Xiao, Qiu-Lin Zhang, Dong-Xiang Zhang, Bao-Hua Feng, Qi-Nan Li, and Jing-Liang He
Appl. Opt. 55(8) 1844-1848 (2016)

Synchronized self-mode-locked 1061-nm and 1064-nm monolithic Nd:YAG laser at cryogenic temperatures with two orthogonally polarized emissions: generation of 670 GHz beating

T. L. Huang, C. L. Sung, H. P. Cheng, C. Y. Cho, H. C. Liang, K. W. Su, K. F. Huang, and Y. F. Chen
Opt. Express 24(19) 22189-22197 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21, 1869–1871 (1996).
    [Crossref]
  2. W. Holzapfel and U. Riss, “Computer-based high resolution transmission ellipsometry,” Appl. Opt. 26, 145–153 (1987).
    [Crossref]
  3. F. Weigl, “A generalized technique of two-wavelength, nondiffuse holographic interferometry,” Appl. Opt. 10, 187–192 (1971).
    [Crossref]
  4. S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21, 054016 (2010).
    [Crossref]
  5. J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and Y. Yang, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
    [Crossref]
  6. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970).
    [Crossref]
  7. W. Holzapfel and W. Settgast, “Force to frequency conversion by intracavity photoelastic modulation,” Appl. Opt. 28, 4585–4594 (1989).
    [Crossref]
  8. W. Holzapfel and M. Finnemann, “High-resolution force sensing by a diode-pumped Nd:YAG laser,” Opt. Lett. 18, 2062–2064 (1993).
    [Crossref]
  9. A. Owyoung and P. Esherick, “Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser,” Opt. Lett. 12, 999–1001 (1987).
    [Crossref]
  10. M. Ohmi, M. Akatsuka, K. Ishikawa, K. Naito, Y. Yonezawa, Y. Nishida, M. Yamanaka, Y. Izawa, and S. Nakai, “High-sensitivity two-dimensional thermal- and mechanical-stress-induced birefringence measurements in a Nd:YAG rod,” Appl. Opt. 33, 6368–6372 (1994).
    [Crossref]
  11. J. Ding, Q. Feng, L. Zhang, and S. Zhang, “Laser frequency splitting method for high-resolution determination of relative stress-optic coefficient and internal stresses in Nd:YAG crystals,” Appl. Opt. 47, 5631–5636 (2008).
    [Crossref]
  12. J. Ding, L. Zhang, Z. Zhang, and S. Zhang, “Frequency splitting phenomenon of dual transverse modes in a Nd:YAG laser,” Opt. Laser Technol. 42, 341–346 (2010).
    [Crossref]
  13. C. Ren and S. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D 42, 155107 (2009).
    [Crossref]
  14. S. L. Zhang and W. Holzapfel, Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications (Wiley, 2013).
  15. T. Yoshino and Y. Kobayashi, “Temperature characteristics and stabilization of orthogonal polarization two-frequency Nd3+:YAG microchip lasers,” Appl. Opt. 38, 3266–3270 (1999).
    [Crossref]
  16. H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319  nm/1338  nm laser,” Laser Phys. Lett. 7, 124–129 (2010).
    [Crossref]
  17. L. Guo, R. Lan, H. Liu, H. Yu, H. Zhang, J. Wang, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Xu, and Z. Wang, “1319  nm and 1338  nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18, 9098–9106 (2010).
    [Crossref]
  18. Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
    [Crossref]
  19. L. Chen, Z. Wang, H. Liu, S. Zhuang, H. Yu, L. Guo, R. Lan, J. Wang, and X. Xu, “Continuous-wave tri-wavelength operation at 1064, 1319 and 1338  nm of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18, 22167–22173 (2010).
    [Crossref]
  20. G. C. Sun, Y. D. Lee, Y. D. Zao, L. J. Xu, J. B. Wang, G. B. Chen, and J. Lu, “Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm,” Laser Phys. 23, 045001 (2013).
    [Crossref]
  21. B. Lin, K. Xiao, Q. L. Zhang, D. X. Zhang, B. H. Feng, Q. N. Li, and J. L. He, “Dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm by direct pumping at 885  nm,” Appl. Opt. 55, 1844–1848 (2016).
    [Crossref]
  22. A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd ed. (Springer, 1990).

2016 (1)

2013 (1)

G. C. Sun, Y. D. Lee, Y. D. Zao, L. J. Xu, J. B. Wang, G. B. Chen, and J. Lu, “Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm,” Laser Phys. 23, 045001 (2013).
[Crossref]

2012 (2)

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
[Crossref]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and Y. Yang, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]

2010 (5)

L. Guo, R. Lan, H. Liu, H. Yu, H. Zhang, J. Wang, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Xu, and Z. Wang, “1319  nm and 1338  nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18, 9098–9106 (2010).
[Crossref]

L. Chen, Z. Wang, H. Liu, S. Zhuang, H. Yu, L. Guo, R. Lan, J. Wang, and X. Xu, “Continuous-wave tri-wavelength operation at 1064, 1319 and 1338  nm of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18, 22167–22173 (2010).
[Crossref]

H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319  nm/1338  nm laser,” Laser Phys. Lett. 7, 124–129 (2010).
[Crossref]

S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21, 054016 (2010).
[Crossref]

J. Ding, L. Zhang, Z. Zhang, and S. Zhang, “Frequency splitting phenomenon of dual transverse modes in a Nd:YAG laser,” Opt. Laser Technol. 42, 341–346 (2010).
[Crossref]

2009 (1)

C. Ren and S. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D 42, 155107 (2009).
[Crossref]

2008 (1)

1999 (1)

1996 (1)

1994 (1)

1993 (1)

1989 (1)

1987 (2)

1971 (1)

1970 (1)

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970).
[Crossref]

Akatsuka, M.

Chen, G. B.

G. C. Sun, Y. D. Lee, Y. D. Zao, L. J. Xu, J. B. Wang, G. B. Chen, and J. Lu, “Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm,” Laser Phys. 23, 045001 (2013).
[Crossref]

Chen, L.

Dan, D.

Ding, J.

J. Ding, L. Zhang, Z. Zhang, and S. Zhang, “Frequency splitting phenomenon of dual transverse modes in a Nd:YAG laser,” Opt. Laser Technol. 42, 341–346 (2010).
[Crossref]

J. Ding, Q. Feng, L. Zhang, and S. Zhang, “Laser frequency splitting method for high-resolution determination of relative stress-optic coefficient and internal stresses in Nd:YAG crystals,” Appl. Opt. 47, 5631–5636 (2008).
[Crossref]

Duan, T.

Duan, Y.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
[Crossref]

Esherick, P.

Feng, B. H.

Feng, Q.

Finnemann, M.

Gao, P.

Gao, S.

H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319  nm/1338  nm laser,” Laser Phys. Lett. 7, 124–129 (2010).
[Crossref]

Gong, M.

H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319  nm/1338  nm laser,” Laser Phys. Lett. 7, 124–129 (2010).
[Crossref]

Guo, L.

Guo, R.

He, J. L.

Holzapfel, W.

Hu, D.

Ishikawa, K.

Izawa, Y.

Kaminskii, A. A.

A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd ed. (Springer, 1990).

Kobayashi, Y.

Koechner, W.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970).
[Crossref]

Kringlebotn, J. T.

Laming, R. I.

Lan, R.

Lee, Y. D.

G. C. Sun, Y. D. Lee, Y. D. Zao, L. J. Xu, J. B. Wang, G. B. Chen, and J. Lu, “Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm,” Laser Phys. 23, 045001 (2013).
[Crossref]

Lei, M.

Li, Q. N.

Li, Y.

S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21, 054016 (2010).
[Crossref]

Lin, B.

Lin, H.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
[Crossref]

Liu, H.

Loh, W. H.

Lu, J.

G. C. Sun, Y. D. Lee, Y. D. Zao, L. J. Xu, J. B. Wang, G. B. Chen, and J. Lu, “Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm,” Laser Phys. 23, 045001 (2013).
[Crossref]

Luo, D.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
[Crossref]

Ma, B.

Min, J.

Naito, K.

Nakai, S.

Nishida, Y.

Ohmi, M.

Owyoung, A.

Ren, C.

C. Ren and S. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D 42, 155107 (2009).
[Crossref]

Rice, D. K.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970).
[Crossref]

Riss, U.

Settgast, W.

Sun, G. C.

G. C. Sun, Y. D. Lee, Y. D. Zao, L. J. Xu, J. B. Wang, G. B. Chen, and J. Lu, “Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm,” Laser Phys. 23, 045001 (2013).
[Crossref]

Tan, Y.

S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21, 054016 (2010).
[Crossref]

Tang, D.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
[Crossref]

Wang, J.

Wang, J. B.

G. C. Sun, Y. D. Lee, Y. D. Zao, L. J. Xu, J. B. Wang, G. B. Chen, and J. Lu, “Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm,” Laser Phys. 23, 045001 (2013).
[Crossref]

Wang, Z.

Weigl, F.

Wushouer, X.

H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319  nm/1338  nm laser,” Laser Phys. Lett. 7, 124–129 (2010).
[Crossref]

Xiao, K.

Xu, C.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
[Crossref]

Xu, L. J.

G. C. Sun, Y. D. Lee, Y. D. Zao, L. J. Xu, J. B. Wang, G. B. Chen, and J. Lu, “Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm,” Laser Phys. 23, 045001 (2013).
[Crossref]

Xu, X.

Yamanaka, M.

Yan, S.

Yang, H.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
[Crossref]

Yang, Y.

Yao, B.

Yonezawa, Y.

Yoshino, T.

Yu, H.

Zao, Y. D.

G. C. Sun, Y. D. Lee, Y. D. Zao, L. J. Xu, J. B. Wang, G. B. Chen, and J. Lu, “Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm,” Laser Phys. 23, 045001 (2013).
[Crossref]

Zhang, D. X.

Zhang, H.

Zhang, J.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
[Crossref]

Zhang, L.

J. Ding, L. Zhang, Z. Zhang, and S. Zhang, “Frequency splitting phenomenon of dual transverse modes in a Nd:YAG laser,” Opt. Laser Technol. 42, 341–346 (2010).
[Crossref]

J. Ding, Q. Feng, L. Zhang, and S. Zhang, “Laser frequency splitting method for high-resolution determination of relative stress-optic coefficient and internal stresses in Nd:YAG crystals,” Appl. Opt. 47, 5631–5636 (2008).
[Crossref]

Zhang, Q. L.

Zhang, S.

J. Ding, L. Zhang, Z. Zhang, and S. Zhang, “Frequency splitting phenomenon of dual transverse modes in a Nd:YAG laser,” Opt. Laser Technol. 42, 341–346 (2010).
[Crossref]

S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21, 054016 (2010).
[Crossref]

C. Ren and S. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D 42, 155107 (2009).
[Crossref]

J. Ding, Q. Feng, L. Zhang, and S. Zhang, “Laser frequency splitting method for high-resolution determination of relative stress-optic coefficient and internal stresses in Nd:YAG crystals,” Appl. Opt. 47, 5631–5636 (2008).
[Crossref]

Zhang, S. L.

S. L. Zhang and W. Holzapfel, Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications (Wiley, 2013).

Zhang, Z.

J. Ding, L. Zhang, Z. Zhang, and S. Zhang, “Frequency splitting phenomenon of dual transverse modes in a Nd:YAG laser,” Opt. Laser Technol. 42, 341–346 (2010).
[Crossref]

Zhao, Y.

Zheng, J.

Zhu, H.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
[Crossref]

Zhuang, S.

Appl. Opt. (8)

F. Weigl, “A generalized technique of two-wavelength, nondiffuse holographic interferometry,” Appl. Opt. 10, 187–192 (1971).
[Crossref]

W. Holzapfel and U. Riss, “Computer-based high resolution transmission ellipsometry,” Appl. Opt. 26, 145–153 (1987).
[Crossref]

W. Holzapfel and W. Settgast, “Force to frequency conversion by intracavity photoelastic modulation,” Appl. Opt. 28, 4585–4594 (1989).
[Crossref]

M. Ohmi, M. Akatsuka, K. Ishikawa, K. Naito, Y. Yonezawa, Y. Nishida, M. Yamanaka, Y. Izawa, and S. Nakai, “High-sensitivity two-dimensional thermal- and mechanical-stress-induced birefringence measurements in a Nd:YAG rod,” Appl. Opt. 33, 6368–6372 (1994).
[Crossref]

T. Yoshino and Y. Kobayashi, “Temperature characteristics and stabilization of orthogonal polarization two-frequency Nd3+:YAG microchip lasers,” Appl. Opt. 38, 3266–3270 (1999).
[Crossref]

J. Ding, Q. Feng, L. Zhang, and S. Zhang, “Laser frequency splitting method for high-resolution determination of relative stress-optic coefficient and internal stresses in Nd:YAG crystals,” Appl. Opt. 47, 5631–5636 (2008).
[Crossref]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and Y. Yang, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]

B. Lin, K. Xiao, Q. L. Zhang, D. X. Zhang, B. H. Feng, Q. N. Li, and J. L. He, “Dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm by direct pumping at 885  nm,” Appl. Opt. 55, 1844–1848 (2016).
[Crossref]

Appl. Phys. Express (1)

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338  nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6, 012701 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970).
[Crossref]

J. Phys. D (1)

C. Ren and S. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D 42, 155107 (2009).
[Crossref]

Laser Phys. (1)

G. C. Sun, Y. D. Lee, Y. D. Zao, L. J. Xu, J. B. Wang, G. B. Chen, and J. Lu, “Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338  nm,” Laser Phys. 23, 045001 (2013).
[Crossref]

Laser Phys. Lett. (1)

H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319  nm/1338  nm laser,” Laser Phys. Lett. 7, 124–129 (2010).
[Crossref]

Meas. Sci. Technol. (1)

S. Zhang, Y. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21, 054016 (2010).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

J. Ding, L. Zhang, Z. Zhang, and S. Zhang, “Frequency splitting phenomenon of dual transverse modes in a Nd:YAG laser,” Opt. Laser Technol. 42, 341–346 (2010).
[Crossref]

Opt. Lett. (3)

Other (2)

S. L. Zhang and W. Holzapfel, Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications (Wiley, 2013).

A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd ed. (Springer, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Configuration of an orthogonally polarized single-longitudinal-mode monolithic Nd:YAG laser at 1319 and 1338 nm.
Fig. 2.
Fig. 2. (a) Fluorescence spectrum in the range of 1315–1350 nm at room temperature. (b) Reflectivity for two types of coating in the range of 1300–1350 nm.
Fig. 3.
Fig. 3. Output power versus absorbed pump power at 1319 nm. Insets: optical spectra for the single-longitudinal-mode and multi-longitudinal-mode operations at absorbed pump powers of 0.83 and 1.05 W.
Fig. 4.
Fig. 4. Pulse trains of the polarization-resolved output intensities Iθ(t) at a pump power of 1.5 W: (a) θ=0°, (b) θ=90°, (c) θ=45°, (d) θ=135°.
Fig. 5.
Fig. 5. Panels (a), (c), and (e) show oscilloscope traces and panels (b), (d), and (f) show the corresponding RF spectra of the beat frequencies Δf1319 with three external mechanical forces of F=1.6, 7.5, and 12 N, respectively.
Fig. 6.
Fig. 6. Experimental results and theoretical results of the beat frequency with respect to the applied external mechanical force, F.
Fig. 7.
Fig. 7. (a) Output power versus absorbed pump power at 1319 and 1338 nm. Optical spectra at (b) 1319 nm and (c) 1338 nm.
Fig. 8.
Fig. 8. Panels (a), (c), and (e) show oscilloscope traces and panels (b), (d), and (f) show the corresponding RF spectra of the frequency differences between Δf1319 and Δf1338 with three applied forces of F=1.6, 7.5, and 15 N, respectively.
Fig. 9.
Fig. 9. Experimental results and theoretical results of the frequency difference between Δf1319 and Δf1338 with respect to the applied external mechanical force, F.
Fig. 10.
Fig. 10. Autocorrelation trace for the dual-wavelength emission with a time span of 2 ps.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δf=νL(nxny)lcry=νLC(σ1σ2)Lcry,
σ1=2F2A,
σ2=6F2A,
Δf=νLC8F2ALcry.

Metrics