Abstract

We report InP-based room-temperature high-average-power quantum cascade lasers emitting at 14 μm. Using a novel active region design, a diagonal bound-to-bound lasing transition is guaranteed by efficient electron injection into the upper laser level and fast nonresonant electron extraction through a miniband from the lower laser level. For a 4 mm long and 40 μm wide double channel ridge waveguide laser with 55 stages of the active region, the threshold current density is only 3.13  kA/cm2 at room temperature. At 293 K, the maximum single-facet peak power and average power are up to 830 mW and 75 mW, respectively. The laser exhibits a characteristic temperature T0 of 395 K over a temperature range from 293 to 353 K.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Low voltage-defect quantum cascade lasers based on excited-states injection at λ ∼ 8.5  μm

Yue Zhao, Jin-Chuan Zhang, Ning Zhuo, Feng-Min Cheng, Dong-Bo Wang, Shen-Qiang Zhai, Li-Jun Wang, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, and Zhan-Guo Wang
Appl. Opt. 57(26) 7579-7583 (2018)

Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold

Xue Huang, William O. Charles, and Claire Gmachl
Opt. Express 19(9) 8297-8302 (2011)

λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature

Richard Maulini, Arkadiy Lyakh, Alexei Tsekoun, and C. Kumar N. Patel
Opt. Express 19(18) 17203-17211 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref]
  2. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
    [Crossref]
  3. K. Fujita, M. Yamanishi, S. Furuta, A. Sugiyama, and T. Edamura, “Extremely temperature-insensitive continuous-wave quantum cascade lasers,” Appl. Phys. Lett. 101, 181111 (2012).
    [Crossref]
  4. C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
    [Crossref]
  5. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
    [Crossref]
  6. M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, “Recent advances in mid infrared (3-5  μm) quantum cascade lasers,” Opt. Mater. Express 3, 1872–1884 (2013).
    [Crossref]
  7. M. S. Vitiello, G. Scalari, B. Williams, and P. D. Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23, 5167–5182 (2015).
    [Crossref]
  8. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
    [Crossref]
  9. N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm,” Appl. Phys. Lett. 97, 131117 (2010).
    [Crossref]
  10. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
    [Crossref]
  11. F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm,” IEEE J. Quantum Electron. 19, 1200407 (2013).
    [Crossref]
  12. A. Szerling, S. Slivken, and M. Razeghi, “High peak power 16  μm InP-related quantum cascade laser,” Opto-Electron. Rev. 25, 205–208 (2017).
    [Crossref]
  13. K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼450  K) of long-wavelength (∼15  μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
    [Crossref]
  14. M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ ≈ 16  μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79, 4271–4273 (2001).
    [Crossref]
  15. A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17  μm,” Appl. Phys. Lett. 74, 638–640 (1999).
    [Crossref]
  16. H. N. Van, Z. Loghmari, H. Philip, M. Bahriz, A. N. Baranov, and R. Teissier, “Long wavelength (λ > 17  μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature,” Photonics 6, 31 (2019).
    [Crossref]
  17. A. N. Baranov, M. Bahriz, and R. Teissier, “Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15  μm,” Opt. Express 24, 18799–18806 (2016).
    [Crossref]
  18. X. Huang, W. O. Charles, and C. Gmachl, “Temperature-insensitive long-wavelength (λ ≈ 14  μm) quantum cascade lasers with low threshold,” Opt. Express 19, 8297–8302 (2011).
    [Crossref]
  19. S. Slivken, A. Evans, J. David, and M. Razeghi, “High-average-power, high-duty-cycle (λ ∼ 6  μm) quantum cascade lasers,” Appl. Phys. Lett. 81, 4321–4323 (2002).
    [Crossref]

2019 (1)

H. N. Van, Z. Loghmari, H. Philip, M. Bahriz, A. N. Baranov, and R. Teissier, “Long wavelength (λ > 17  μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature,” Photonics 6, 31 (2019).
[Crossref]

2017 (2)

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

A. Szerling, S. Slivken, and M. Razeghi, “High peak power 16  μm InP-related quantum cascade laser,” Opto-Electron. Rev. 25, 205–208 (2017).
[Crossref]

2016 (1)

2015 (2)

2013 (2)

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm,” IEEE J. Quantum Electron. 19, 1200407 (2013).
[Crossref]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, “Recent advances in mid infrared (3-5  μm) quantum cascade lasers,” Opt. Mater. Express 3, 1872–1884 (2013).
[Crossref]

2012 (3)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

K. Fujita, M. Yamanishi, S. Furuta, A. Sugiyama, and T. Edamura, “Extremely temperature-insensitive continuous-wave quantum cascade lasers,” Appl. Phys. Lett. 101, 181111 (2012).
[Crossref]

2011 (1)

2010 (2)

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm,” Appl. Phys. Lett. 97, 131117 (2010).
[Crossref]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼450  K) of long-wavelength (∼15  μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

2009 (1)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

2002 (1)

S. Slivken, A. Evans, J. David, and M. Razeghi, “High-average-power, high-duty-cycle (λ ∼ 6  μm) quantum cascade lasers,” Appl. Phys. Lett. 81, 4321–4323 (2002).
[Crossref]

2001 (1)

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ ≈ 16  μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79, 4271–4273 (2001).
[Crossref]

1999 (1)

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17  μm,” Appl. Phys. Lett. 74, 638–640 (1999).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Andrews, A. M.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Bachmann, D.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Bahriz, M.

H. N. Van, Z. Loghmari, H. Philip, M. Bahriz, A. N. Baranov, and R. Teissier, “Long wavelength (λ > 17  μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature,” Photonics 6, 31 (2019).
[Crossref]

A. N. Baranov, M. Bahriz, and R. Teissier, “Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15  μm,” Opt. Express 24, 18799–18806 (2016).
[Crossref]

Bai, Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, “Recent advances in mid infrared (3-5  μm) quantum cascade lasers,” Opt. Mater. Express 3, 1872–1884 (2013).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm,” Appl. Phys. Lett. 97, 131117 (2010).
[Crossref]

Bandyopadhyay, N.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, “Recent advances in mid infrared (3-5  μm) quantum cascade lasers,” Opt. Mater. Express 3, 1872–1884 (2013).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm,” Appl. Phys. Lett. 97, 131117 (2010).
[Crossref]

Baranov, A. N.

H. N. Van, Z. Loghmari, H. Philip, M. Bahriz, A. N. Baranov, and R. Teissier, “Long wavelength (λ > 17  μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature,” Photonics 6, 31 (2019).
[Crossref]

A. N. Baranov, M. Bahriz, and R. Teissier, “Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15  μm,” Opt. Express 24, 18799–18806 (2016).
[Crossref]

Beck, M.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ ≈ 16  μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79, 4271–4273 (2001).
[Crossref]

Brandstetter, M.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Caffey, D. P.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm,” IEEE J. Quantum Electron. 19, 1200407 (2013).
[Crossref]

Caneau, C.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm,” IEEE J. Quantum Electron. 19, 1200407 (2013).
[Crossref]

Capasso, F.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17  μm,” Appl. Phys. Lett. 74, 638–640 (1999).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Charles, W. O.

Cho, A. Y.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17  μm,” Appl. Phys. Lett. 74, 638–640 (1999).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

David, J.

S. Slivken, A. Evans, J. David, and M. Razeghi, “High-average-power, high-duty-cycle (λ ∼ 6  μm) quantum cascade lasers,” Appl. Phys. Lett. 81, 4321–4323 (2002).
[Crossref]

Day, T.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm,” IEEE J. Quantum Electron. 19, 1200407 (2013).
[Crossref]

Detz, H.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Deutsch, C.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Diehl, L.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Edamura, T.

K. Fujita, M. Yamanishi, S. Furuta, A. Sugiyama, and T. Edamura, “Extremely temperature-insensitive continuous-wave quantum cascade lasers,” Appl. Phys. Lett. 101, 181111 (2012).
[Crossref]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼450  K) of long-wavelength (∼15  μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

Evans, A.

S. Slivken, A. Evans, J. David, and M. Razeghi, “High-average-power, high-duty-cycle (λ ∼ 6  μm) quantum cascade lasers,” Appl. Phys. Lett. 81, 4321–4323 (2002).
[Crossref]

Faist, J.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ ≈ 16  μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79, 4271–4273 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Fujita, K.

K. Fujita, M. Yamanishi, S. Furuta, A. Sugiyama, and T. Edamura, “Extremely temperature-insensitive continuous-wave quantum cascade lasers,” Appl. Phys. Lett. 101, 181111 (2012).
[Crossref]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼450  K) of long-wavelength (∼15  μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

Furuta, S.

K. Fujita, M. Yamanishi, S. Furuta, A. Sugiyama, and T. Edamura, “Extremely temperature-insensitive continuous-wave quantum cascade lasers,” Appl. Phys. Lett. 101, 181111 (2012).
[Crossref]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼450  K) of long-wavelength (∼15  μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

Gmachl, C.

X. Huang, W. O. Charles, and C. Gmachl, “Temperature-insensitive long-wavelength (λ ≈ 14  μm) quantum cascade lasers with low threshold,” Opt. Express 19, 8297–8302 (2011).
[Crossref]

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17  μm,” Appl. Phys. Lett. 74, 638–640 (1999).
[Crossref]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Gokden, B.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm,” Appl. Phys. Lett. 97, 131117 (2010).
[Crossref]

Heydari, D.

Hofstetter, D.

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ ≈ 16  μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79, 4271–4273 (2001).
[Crossref]

Huang, X.

Hughes, L. C.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm,” IEEE J. Quantum Electron. 19, 1200407 (2013).
[Crossref]

Hutchinson, A. L.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17  μm,” Appl. Phys. Lett. 74, 638–640 (1999).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Kainz, M. A.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Krall, M.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Leblanc, H. P.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm,” IEEE J. Quantum Electron. 19, 1200407 (2013).
[Crossref]

Loghmari, Z.

H. N. Van, Z. Loghmari, H. Philip, M. Bahriz, A. N. Baranov, and R. Teissier, “Long wavelength (λ > 17  μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature,” Photonics 6, 31 (2019).
[Crossref]

Lu, Q.

Lu, Q. Y.

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

MacFarland, D.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Myzaferi, A.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm,” Appl. Phys. Lett. 97, 131117 (2010).
[Crossref]

Natale, P. D.

Ohtani, K.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Pflügl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Philip, H.

H. N. Van, Z. Loghmari, H. Philip, M. Bahriz, A. N. Baranov, and R. Teissier, “Long wavelength (λ > 17  μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature,” Photonics 6, 31 (2019).
[Crossref]

Razeghi, M.

A. Szerling, S. Slivken, and M. Razeghi, “High peak power 16  μm InP-related quantum cascade laser,” Opto-Electron. Rev. 25, 205–208 (2017).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, “Recent advances in mid infrared (3-5  μm) quantum cascade lasers,” Opt. Mater. Express 3, 1872–1884 (2013).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm,” Appl. Phys. Lett. 97, 131117 (2010).
[Crossref]

S. Slivken, A. Evans, J. David, and M. Razeghi, “High-average-power, high-duty-cycle (λ ∼ 6  μm) quantum cascade lasers,” Appl. Phys. Lett. 81, 4321–4323 (2002).
[Crossref]

Rochat, M.

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ ≈ 16  μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79, 4271–4273 (2001).
[Crossref]

Scalari, G.

Schönhuber, S.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Schrenk, W.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Sivco, D. L.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17  μm,” Appl. Phys. Lett. 74, 638–640 (1999).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Slivken, S.

A. Szerling, S. Slivken, and M. Razeghi, “High peak power 16  μm InP-related quantum cascade laser,” Opto-Electron. Rev. 25, 205–208 (2017).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, “Recent advances in mid infrared (3-5  μm) quantum cascade lasers,” Opt. Mater. Express 3, 1872–1884 (2013).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm,” Appl. Phys. Lett. 97, 131117 (2010).
[Crossref]

S. Slivken, A. Evans, J. David, and M. Razeghi, “High-average-power, high-duty-cycle (λ ∼ 6  μm) quantum cascade lasers,” Appl. Phys. Lett. 81, 4321–4323 (2002).
[Crossref]

Strasser, G.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Sugiyama, A.

K. Fujita, M. Yamanishi, S. Furuta, A. Sugiyama, and T. Edamura, “Extremely temperature-insensitive continuous-wave quantum cascade lasers,” Appl. Phys. Lett. 101, 181111 (2012).
[Crossref]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼450  K) of long-wavelength (∼15  μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

Szerling, A.

A. Szerling, S. Slivken, and M. Razeghi, “High peak power 16  μm InP-related quantum cascade laser,” Opto-Electron. Rev. 25, 205–208 (2017).
[Crossref]

Teissier, R.

H. N. Van, Z. Loghmari, H. Philip, M. Bahriz, A. N. Baranov, and R. Teissier, “Long wavelength (λ > 17  μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature,” Photonics 6, 31 (2019).
[Crossref]

A. N. Baranov, M. Bahriz, and R. Teissier, “Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15  μm,” Opt. Express 24, 18799–18806 (2016).
[Crossref]

Tredicucci, A.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17  μm,” Appl. Phys. Lett. 74, 638–640 (1999).
[Crossref]

Tsao, S.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm,” Appl. Phys. Lett. 97, 131117 (2010).
[Crossref]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Unterrainer, K.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Van, H. N.

H. N. Van, Z. Loghmari, H. Philip, M. Bahriz, A. N. Baranov, and R. Teissier, “Long wavelength (λ > 17  μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature,” Photonics 6, 31 (2019).
[Crossref]

Vitiello, M. S.

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

Williams, B.

Xie, F.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm,” IEEE J. Quantum Electron. 19, 1200407 (2013).
[Crossref]

Yamanishi, M.

K. Fujita, M. Yamanishi, S. Furuta, A. Sugiyama, and T. Edamura, “Extremely temperature-insensitive continuous-wave quantum cascade lasers,” Appl. Phys. Lett. 101, 181111 (2012).
[Crossref]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼450  K) of long-wavelength (∼15  μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

Zah, C. E.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm,” IEEE J. Quantum Electron. 19, 1200407 (2013).
[Crossref]

Zederbauer, T.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Zhou, W.

ACS Photon. (1)

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers,” ACS Photon. 4, 957–962 (2017).
[Crossref]

Appl. Phys. Lett. (8)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[Crossref]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm,” Appl. Phys. Lett. 97, 131117 (2010).
[Crossref]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼450  K) of long-wavelength (∼15  μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ ≈ 16  μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79, 4271–4273 (2001).
[Crossref]

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17  μm,” Appl. Phys. Lett. 74, 638–640 (1999).
[Crossref]

S. Slivken, A. Evans, J. David, and M. Razeghi, “High-average-power, high-duty-cycle (λ ∼ 6  μm) quantum cascade lasers,” Appl. Phys. Lett. 81, 4321–4323 (2002).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100, 212104 (2012).
[Crossref]

K. Fujita, M. Yamanishi, S. Furuta, A. Sugiyama, and T. Edamura, “Extremely temperature-insensitive continuous-wave quantum cascade lasers,” Appl. Phys. Lett. 101, 181111 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm,” IEEE J. Quantum Electron. 19, 1200407 (2013).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (1)

Opto-Electron. Rev. (1)

A. Szerling, S. Slivken, and M. Razeghi, “High peak power 16  μm InP-related quantum cascade laser,” Opto-Electron. Rev. 25, 205–208 (2017).
[Crossref]

Photonics (1)

H. N. Van, Z. Loghmari, H. Philip, M. Bahriz, A. N. Baranov, and R. Teissier, “Long wavelength (λ > 17  μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature,” Photonics 6, 31 (2019).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic conduction band diagram of a portion of the active layers under an applied electronic field of 28 kV/cm. The moduli squared of the relevant wave functions are shown. The layer sequence of one period of the structure in angstroms starting from the injection barrier (toward the right side) is as follows: 41/31/9/59/7/60/8/56/9/51/15/49/21/48/23/43/29/40/30/38/31/35, where In0.52Al0.48As barrier layers are in bold, In0.53Ga0.47As quantum wells are in roman, and the doped layers (Si, 2.3×1017  cm3) are underlined. The inset shows a schematic of the diagonal transition and nonresonant extraction scheme.
Fig. 2.
Fig. 2. Lasing spectra of the QCL at various temperatures. The inset is a lateral far-field radiation pattern at the heat sink temperature of 293 K.
Fig. 3.
Fig. 3. Pulsed PIV characteristics for an HR-coated 4 mm long and 40 μm wide QCL at various heat sink temperatures. The frequency of driving current is 5 kHz, and the duration is 2 μs.
Fig. 4.
Fig. 4. Threshold current density and slope efficiency at different temperatures, where the dashed curves are theoretical fittings.
Fig. 5.
Fig. 5. Average output power characteristics of the laser at heat sink temperatures from 293 to 353 K.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η=hνeNpαmαw+αmηi,
Jth=J0exp(T/T0),
η=η0exp(T/T1),
Rth=T0ln(Iavg,maxdmaxI0)TsinkVIavg,max,