A. Patsyk, M. A. Bandres, R. Bekenstein, and M. Segev, “Observation of accelerating wave packets in curved space,” Phys. Rev. X 8, 011001 (2018).

[Crossref]

D. Wang, C. Liu, H. Liu, J. Han, and S. Zhang, “Wave dynamics on toroidal surface,” Opt. Express 26, 17820–17829 (2018).

[Crossref]

R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, and M. Segev, “Control of light by curved space in nanophotonic structures,” Nat. Photonics 11, 664–670 (2017).

[Crossref]

T. Tyc and A. J. Danner, “Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation,” Phys. Rev. A 96, 053838 (2017).

[Crossref]

K. Zuzaňáková and T. Tyc, “Scattering of waves by the invisible lens,” J. Opt. 19, 015601 (2016).

[Crossref]

V. H. Schultheiss, S. Batz, and U. Peschel, “Hanbury Brown and Twiss measurements in curved space,” Nat. Photonics 10, 106–110 (2016).

[Crossref]

C. Sheng, R. Bekenstein, H. Liu, S. Zhu, and M. Segev, “Wavefront shaping through emulated curved space in waveguide settings,” Nat. Commun. 7, 10747 (2016).

[Crossref]

R. Bekenstein, J. Nemirovsky, I. Kaminer, and M. Segev, “Shape-preserving accelerating electromagnetic wavepackets in curved space,” Phys. Rev. X 4, 011038 (2014).

[Crossref]

T. Tyc, H. Chen, A. Danner, and Y. Xu, “Invisible lenses with positive isotropic refractive index,” Phys. Rev. A 90, 053829 (2014).

[Crossref]

T. Tyc, “Spectra of absolute instruments from the WKB approximation,” New J. Phys. 15, 065005 (2013).

[Crossref]

C. Sheng, H. Liu, Y. Wang, S. Zhu, and D. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7, 902–906 (2013).

[Crossref]

T. Tyc and A. Danner, “Frequency spectra of absolute optical instruments,” New J. Phys. 14, 085023 (2012).

[Crossref]

M. Šarbort and T. Tyc, “Spherical media and geodesic lenses in geometrical optics,” J. Opt. 14, 075705 (2012).

[Crossref]

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13, 115004 (2011).

[Crossref]

J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13, 083007 (2011).

[Crossref]

V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, and U. Peschel, “Optics in curved space,” Phys. Rev. Lett. 105, 143901 (2010).

[Crossref]

U. Leonhardt, “Perfect imaging without negative refraction,” New J. Phys. 11, 093040 (2009).

[Crossref]

S. Batz and U. Peschel, “Linear and nonlinear optics in curved space,” Phys. Rev. A 78, 043821 (2008).

[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[Crossref]

S. Cornbleet and P. Rinous, “Generalised formulas for equivalent geodesic and nonuniform refractive lenses,” IEE Proc. H-Microw. Opt. Antennas 128, 95 (1981).

[Crossref]

R. Rinehart, “A solution of the problem of rapid scanning for radar antennae,” J. Appl. Phys. 19, 860–862 (1948).

[Crossref]

R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, and M. Segev, “Control of light by curved space in nanophotonic structures,” Nat. Photonics 11, 664–670 (2017).

[Crossref]

A. Patsyk, M. A. Bandres, R. Bekenstein, and M. Segev, “Observation of accelerating wave packets in curved space,” Phys. Rev. X 8, 011001 (2018).

[Crossref]

V. H. Schultheiss, S. Batz, and U. Peschel, “Hanbury Brown and Twiss measurements in curved space,” Nat. Photonics 10, 106–110 (2016).

[Crossref]

V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, and U. Peschel, “Optics in curved space,” Phys. Rev. Lett. 105, 143901 (2010).

[Crossref]

S. Batz and U. Peschel, “Linear and nonlinear optics in curved space,” Phys. Rev. A 78, 043821 (2008).

[Crossref]

A. Patsyk, M. A. Bandres, R. Bekenstein, and M. Segev, “Observation of accelerating wave packets in curved space,” Phys. Rev. X 8, 011001 (2018).

[Crossref]

R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, and M. Segev, “Control of light by curved space in nanophotonic structures,” Nat. Photonics 11, 664–670 (2017).

[Crossref]

C. Sheng, R. Bekenstein, H. Liu, S. Zhu, and M. Segev, “Wavefront shaping through emulated curved space in waveguide settings,” Nat. Commun. 7, 10747 (2016).

[Crossref]

R. Bekenstein, J. Nemirovsky, I. Kaminer, and M. Segev, “Shape-preserving accelerating electromagnetic wavepackets in curved space,” Phys. Rev. X 4, 011038 (2014).

[Crossref]

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13, 115004 (2011).

[Crossref]

A. L. Besse, Manifolds All of Whose Geodesics Are Closed (Springer, 2012).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theoryof Propagation, Interference and Diffraction of Light, CUP Archive (2000).

T. Tyc, H. Chen, A. Danner, and Y. Xu, “Invisible lenses with positive isotropic refractive index,” Phys. Rev. A 90, 053829 (2014).

[Crossref]

S. Cornbleet and P. Rinous, “Generalised formulas for equivalent geodesic and nonuniform refractive lenses,” IEE Proc. H-Microw. Opt. Antennas 128, 95 (1981).

[Crossref]

T. Tyc, H. Chen, A. Danner, and Y. Xu, “Invisible lenses with positive isotropic refractive index,” Phys. Rev. A 90, 053829 (2014).

[Crossref]

T. Tyc and A. Danner, “Frequency spectra of absolute optical instruments,” New J. Phys. 14, 085023 (2012).

[Crossref]

T. Tyc and A. J. Danner, “Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation,” Phys. Rev. A 96, 053838 (2017).

[Crossref]

V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, and U. Peschel, “Optics in curved space,” Phys. Rev. Lett. 105, 143901 (2010).

[Crossref]

R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, and M. Segev, “Control of light by curved space in nanophotonic structures,” Nat. Photonics 11, 664–670 (2017).

[Crossref]

R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, and M. Segev, “Control of light by curved space in nanophotonic structures,” Nat. Photonics 11, 664–670 (2017).

[Crossref]

C. Sheng, H. Liu, Y. Wang, S. Zhu, and D. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7, 902–906 (2013).

[Crossref]

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13, 115004 (2011).

[Crossref]

R. K. Luneburg and M. Herzberger, Mathematical Theory of Optics (University of California, 1964).

R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, and M. Segev, “Control of light by curved space in nanophotonic structures,” Nat. Photonics 11, 664–670 (2017).

[Crossref]

R. Bekenstein, J. Nemirovsky, I. Kaminer, and M. Segev, “Shape-preserving accelerating electromagnetic wavepackets in curved space,” Phys. Rev. X 4, 011038 (2014).

[Crossref]

J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13, 083007 (2011).

[Crossref]

U. Leonhardt, “Perfect imaging without negative refraction,” New J. Phys. 11, 093040 (2009).

[Crossref]

U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Dover, 2010).

D. Wang, C. Liu, H. Liu, J. Han, and S. Zhang, “Wave dynamics on toroidal surface,” Opt. Express 26, 17820–17829 (2018).

[Crossref]

C. Sheng, R. Bekenstein, H. Liu, S. Zhu, and M. Segev, “Wavefront shaping through emulated curved space in waveguide settings,” Nat. Commun. 7, 10747 (2016).

[Crossref]

C. Sheng, H. Liu, Y. Wang, S. Zhu, and D. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7, 902–906 (2013).

[Crossref]

V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, and U. Peschel, “Optics in curved space,” Phys. Rev. Lett. 105, 143901 (2010).

[Crossref]

R. K. Luneburg and M. Herzberger, Mathematical Theory of Optics (University of California, 1964).

R. Bekenstein, J. Nemirovsky, I. Kaminer, and M. Segev, “Shape-preserving accelerating electromagnetic wavepackets in curved space,” Phys. Rev. X 4, 011038 (2014).

[Crossref]

V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, and U. Peschel, “Optics in curved space,” Phys. Rev. Lett. 105, 143901 (2010).

[Crossref]

A. Patsyk, M. A. Bandres, R. Bekenstein, and M. Segev, “Observation of accelerating wave packets in curved space,” Phys. Rev. X 8, 011001 (2018).

[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[Crossref]

J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13, 083007 (2011).

[Crossref]

V. H. Schultheiss, S. Batz, and U. Peschel, “Hanbury Brown and Twiss measurements in curved space,” Nat. Photonics 10, 106–110 (2016).

[Crossref]

V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, and U. Peschel, “Optics in curved space,” Phys. Rev. Lett. 105, 143901 (2010).

[Crossref]

S. Batz and U. Peschel, “Linear and nonlinear optics in curved space,” Phys. Rev. A 78, 043821 (2008).

[Crossref]

U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Dover, 2010).

R. Rinehart, “A solution of the problem of rapid scanning for radar antennae,” J. Appl. Phys. 19, 860–862 (1948).

[Crossref]

S. Cornbleet and P. Rinous, “Generalised formulas for equivalent geodesic and nonuniform refractive lenses,” IEE Proc. H-Microw. Opt. Antennas 128, 95 (1981).

[Crossref]

M. Šarbort and T. Tyc, “Spherical media and geodesic lenses in geometrical optics,” J. Opt. 14, 075705 (2012).

[Crossref]

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13, 115004 (2011).

[Crossref]

M. Šarbort, Non-Euclidean Geometry in Optics, Ph.D thesis (Masaryk University, 2013).

V. H. Schultheiss, S. Batz, and U. Peschel, “Hanbury Brown and Twiss measurements in curved space,” Nat. Photonics 10, 106–110 (2016).

[Crossref]

V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, and U. Peschel, “Optics in curved space,” Phys. Rev. Lett. 105, 143901 (2010).

[Crossref]

A. Patsyk, M. A. Bandres, R. Bekenstein, and M. Segev, “Observation of accelerating wave packets in curved space,” Phys. Rev. X 8, 011001 (2018).

[Crossref]

R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, and M. Segev, “Control of light by curved space in nanophotonic structures,” Nat. Photonics 11, 664–670 (2017).

[Crossref]

C. Sheng, R. Bekenstein, H. Liu, S. Zhu, and M. Segev, “Wavefront shaping through emulated curved space in waveguide settings,” Nat. Commun. 7, 10747 (2016).

[Crossref]

R. Bekenstein, J. Nemirovsky, I. Kaminer, and M. Segev, “Shape-preserving accelerating electromagnetic wavepackets in curved space,” Phys. Rev. X 4, 011038 (2014).

[Crossref]

R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, and M. Segev, “Control of light by curved space in nanophotonic structures,” Nat. Photonics 11, 664–670 (2017).

[Crossref]

C. Sheng, R. Bekenstein, H. Liu, S. Zhu, and M. Segev, “Wavefront shaping through emulated curved space in waveguide settings,” Nat. Commun. 7, 10747 (2016).

[Crossref]

C. Sheng, H. Liu, Y. Wang, S. Zhu, and D. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7, 902–906 (2013).

[Crossref]

V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, and U. Peschel, “Optics in curved space,” Phys. Rev. Lett. 105, 143901 (2010).

[Crossref]

R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, and M. Segev, “Control of light by curved space in nanophotonic structures,” Nat. Photonics 11, 664–670 (2017).

[Crossref]

V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, and U. Peschel, “Optics in curved space,” Phys. Rev. Lett. 105, 143901 (2010).

[Crossref]

T. Tyc and A. J. Danner, “Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation,” Phys. Rev. A 96, 053838 (2017).

[Crossref]

K. Zuzaňáková and T. Tyc, “Scattering of waves by the invisible lens,” J. Opt. 19, 015601 (2016).

[Crossref]

T. Tyc, H. Chen, A. Danner, and Y. Xu, “Invisible lenses with positive isotropic refractive index,” Phys. Rev. A 90, 053829 (2014).

[Crossref]

T. Tyc, “Spectra of absolute instruments from the WKB approximation,” New J. Phys. 15, 065005 (2013).

[Crossref]

T. Tyc and A. Danner, “Frequency spectra of absolute optical instruments,” New J. Phys. 14, 085023 (2012).

[Crossref]

M. Šarbort and T. Tyc, “Spherical media and geodesic lenses in geometrical optics,” J. Opt. 14, 075705 (2012).

[Crossref]

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13, 115004 (2011).

[Crossref]

J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13, 083007 (2011).

[Crossref]

C. Sheng, H. Liu, Y. Wang, S. Zhu, and D. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7, 902–906 (2013).

[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theoryof Propagation, Interference and Diffraction of Light, CUP Archive (2000).

T. Tyc, H. Chen, A. Danner, and Y. Xu, “Invisible lenses with positive isotropic refractive index,” Phys. Rev. A 90, 053829 (2014).

[Crossref]

C. Sheng, R. Bekenstein, H. Liu, S. Zhu, and M. Segev, “Wavefront shaping through emulated curved space in waveguide settings,” Nat. Commun. 7, 10747 (2016).

[Crossref]

C. Sheng, H. Liu, Y. Wang, S. Zhu, and D. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7, 902–906 (2013).

[Crossref]

K. Zuzaňáková and T. Tyc, “Scattering of waves by the invisible lens,” J. Opt. 19, 015601 (2016).

[Crossref]

S. Cornbleet and P. Rinous, “Generalised formulas for equivalent geodesic and nonuniform refractive lenses,” IEE Proc. H-Microw. Opt. Antennas 128, 95 (1981).

[Crossref]

R. Rinehart, “A solution of the problem of rapid scanning for radar antennae,” J. Appl. Phys. 19, 860–862 (1948).

[Crossref]

M. Šarbort and T. Tyc, “Spherical media and geodesic lenses in geometrical optics,” J. Opt. 14, 075705 (2012).

[Crossref]

K. Zuzaňáková and T. Tyc, “Scattering of waves by the invisible lens,” J. Opt. 19, 015601 (2016).

[Crossref]

C. Sheng, R. Bekenstein, H. Liu, S. Zhu, and M. Segev, “Wavefront shaping through emulated curved space in waveguide settings,” Nat. Commun. 7, 10747 (2016).

[Crossref]

C. Sheng, H. Liu, Y. Wang, S. Zhu, and D. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7, 902–906 (2013).

[Crossref]

V. H. Schultheiss, S. Batz, and U. Peschel, “Hanbury Brown and Twiss measurements in curved space,” Nat. Photonics 10, 106–110 (2016).

[Crossref]

R. Bekenstein, Y. Kabessa, Y. Sharabi, O. Tal, N. Engheta, G. Eisenstein, A. J. Agranat, and M. Segev, “Control of light by curved space in nanophotonic structures,” Nat. Photonics 11, 664–670 (2017).

[Crossref]

U. Leonhardt, “Perfect imaging without negative refraction,” New J. Phys. 11, 093040 (2009).

[Crossref]

J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13, 083007 (2011).

[Crossref]

T. Tyc, “Spectra of absolute instruments from the WKB approximation,” New J. Phys. 15, 065005 (2013).

[Crossref]

T. Tyc and A. Danner, “Frequency spectra of absolute optical instruments,” New J. Phys. 14, 085023 (2012).

[Crossref]

T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13, 115004 (2011).

[Crossref]

T. Tyc and A. J. Danner, “Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation,” Phys. Rev. A 96, 053838 (2017).

[Crossref]

T. Tyc, H. Chen, A. Danner, and Y. Xu, “Invisible lenses with positive isotropic refractive index,” Phys. Rev. A 90, 053829 (2014).

[Crossref]

S. Batz and U. Peschel, “Linear and nonlinear optics in curved space,” Phys. Rev. A 78, 043821 (2008).

[Crossref]

V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, and U. Peschel, “Optics in curved space,” Phys. Rev. Lett. 105, 143901 (2010).

[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[Crossref]

R. Bekenstein, J. Nemirovsky, I. Kaminer, and M. Segev, “Shape-preserving accelerating electromagnetic wavepackets in curved space,” Phys. Rev. X 4, 011038 (2014).

[Crossref]

A. Patsyk, M. A. Bandres, R. Bekenstein, and M. Segev, “Observation of accelerating wave packets in curved space,” Phys. Rev. X 8, 011001 (2018).

[Crossref]

U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Dover, 2010).

A. L. Besse, Manifolds All of Whose Geodesics Are Closed (Springer, 2012).

M. Šarbort, Non-Euclidean Geometry in Optics, Ph.D thesis (Masaryk University, 2013).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theoryof Propagation, Interference and Diffraction of Light, CUP Archive (2000).

R. K. Luneburg and M. Herzberger, Mathematical Theory of Optics (University of California, 1964).