Abstract

We present the design, fabrication, and characterization of a highly nonlinear few-mode fiber (HNL-FMF) with an intermodal nonlinear coefficient of 2.8  (W·km)1, which to the best of our knowledge is the highest reported to date. The graded-index circular core fiber supports two mode groups (MGs) with six eigenmodes and is highly doped with germanium. This breaks the mode degeneracy within the higher-order MG, leading to different group velocities among corresponding eigenmodes. Thus, the HNL-FMF can support multiple intermodal four-wave mixing processes between the two MGs at the same time. In a proof-of-concept experiment, we demonstrate simultaneous intermodal wavelength conversions among three eigenmodes of the HNL-FMF over the C band.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Selective wavelength conversion in a few-mode fiber

Omar F. Anjum, Massimiliano Guasoni, Peter Horak, Yongmin Jung, Masato Suzuki, Takemi Hasegawa, Kyle Bottrill, David J. Richardson, Francesca Parmigiani, and Periklis Petropoulos
Opt. Express 27(17) 24072-24081 (2019)

Design of elliptical few-mode fibers for mode-coupling-free parametric amplification

Cheng Guo, Zhenzhen Zhang, Ningbo Zhao, Liang Cui, Xiaoying Li, Jian Zhao, and Guifang Li
J. Opt. Soc. Am. B 35(3) 545-551 (2018)

Experimental demonstration of intermodal nonlinear effects between full vectorial modes in a few moded fiber

Lars Rishøj, Poul Kristensen, Siddharth Ramachandran, and Karsten Rottwitt
Opt. Express 21(23) 28836-28841 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [Crossref]
  2. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
    [Crossref]
  3. C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper Th.13.C.3.
  4. R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
    [Crossref]
  5. N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper OTu2D.5.
  6. M. Guasoni, “Generalized modulational instability in multimode fibers: wideband multimode parametric amplification,” Phys. Rev. A 92, 033849 (2015).
    [Crossref]
  7. E. Nazemosadat, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Design of highly nonlinear few-mode fiber for C-band optical parametric amplification,” J. Lightwave Technol. 35, 2810–2817 (2017).
    [Crossref]
  8. Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22, 32039–32059 (2014).
    [Crossref]
  9. R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
    [Crossref]
  10. S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
    [Crossref]
  11. O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering,” APL Photon. 4, 022902 (2019).
    [Crossref]
  12. J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran, “Intermodal group-velocity engineering for broadband nonlinear optics,” Photon. Res. 7, 1–7 (2019).
    [Crossref]
  13. H. Zhang, M. Bigot-Astruc, L. Bigot, P. Sillard, and J. Fatome, “Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber,” Opt. Express 27, 15413–15425 (2019).
    [Crossref]
  14. G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.
  15. E. Nazemosadat and A. Mafi, “Design considerations for multicore optical fibers in nonlinear switching and mode-locking applications,” J. Opt. Soc. Am. B 31, 1874–1878 (2014).
    [Crossref]
  16. G. Lopez-Galmiche, Z. S. Eznaveh, M. A. Eftekhar, J. A. Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. A. Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41, 2553–2556 (2016).
    [Crossref]
  17. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9, 306–310 (2015).
    [Crossref]
  18. H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green,” Opt. Express 23, 14487–14500 (2015).
    [Crossref]
  19. J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101, 161106 (2012).
    [Crossref]
  20. E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Am. B 33, 144–150 (2016).
    [Crossref]
  21. R. Dupiol, A. Bendahmane, K. Krupa, J. Fatome, A. Tonello, M. Fabert, V. Couderc, S. Wabnitz, and G. Millot, “Intermodal modulational instability in graded-index multimode optical fibers,” Opt. Lett. 42, 3419–3422 (2017).
    [Crossref]
  22. A. Bendahmane, K. Krupa, A. Tonello, D. Modotto, T. Sylvestre, V. Couderc, S. Wabnitz, and G. Millot, “Seeded intermodal four-wave mixing in a highly multimode fiber,” J. Opt. Soc. Am. B 35, 295–301 (2018).
    [Crossref]
  23. K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10, 1553–1561 (1992).
    [Crossref]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  25. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
    [Crossref]
  26. C. J. McKinstrie, S. Radic, and M. G. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express 12, 5037–5066 (2004).
    [Crossref]
  27. G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper W1C.4.
  28. K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14, 492–494 (2002).
    [Crossref]
  29. K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
    [Crossref]
  30. J. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Degenerate mode-group division multiplexing,” J. Lightwave Technol. 30, 3946–3952 (2012).
    [Crossref]
  31. J. Carpenter, B. J. Eggleton, and J. Schröder, “110×110 optical mode transfer matrix inversion,” Opt. Express 22, 96–101 (2014).
    [Crossref]
  32. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  33. Y. Yang, J. Cui, S. Fu, M. Tang, and D. Liu, “All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band,” IEEE J. Sel. Top. Quantum Electron. 26, 4500307 (2020).
    [Crossref]
  34. J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Time-domain multimode dispersion measurement in a higher-order-mode fiber,” Opt. Lett. 37, 347–349 (2012).
    [Crossref]
  35. J. Su, X. Dong, and C. Lu, “Characteristics of few mode fiber under bending,” IEEE J. Sel. Top. Quantum Electron. 22, 139–145 (2016).
    [Crossref]
  36. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,” Opt. Lett. 21, 1966–1968 (1996).
    [Crossref]
  37. K. Krupa, A. Tonello, V. V. Kozlov, V. Couderc, P. D. Bin, S. Wabnitz, A. Barthélémy, L. Labonté, and S. Tanzilli, “Bragg-scattering conversion at telecom wavelengths towards the photon counting regime,” Opt. Express 20, 27220–27225 (2012).
    [Crossref]
  38. M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal four-wave mixing and parametric amplification in kilometer-long multimode fibers,” J. Lightwave Technol. 35, 5296–5305 (2017).
    [Crossref]
  39. M. Esmaeelpour, R. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power fluctuations of intermodal four-wave mixing in few-mode fibers,” J. Lightwave Technol. 35, 2429–2435 (2017).
    [Crossref]

2020 (1)

Y. Yang, J. Cui, S. Fu, M. Tang, and D. Liu, “All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band,” IEEE J. Sel. Top. Quantum Electron. 26, 4500307 (2020).
[Crossref]

2019 (3)

2018 (1)

2017 (4)

2016 (4)

2015 (3)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9, 306–310 (2015).
[Crossref]

M. Guasoni, “Generalized modulational instability in multimode fibers: wideband multimode parametric amplification,” Phys. Rev. A 92, 033849 (2015).
[Crossref]

H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green,” Opt. Express 23, 14487–14500 (2015).
[Crossref]

2014 (3)

2013 (2)

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

2012 (5)

2009 (1)

2004 (1)

2002 (2)

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14, 492–494 (2002).
[Crossref]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

1996 (1)

1992 (1)

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10, 1553–1561 (1992).
[Crossref]

1975 (1)

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[Crossref]

1974 (1)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[Crossref]

Agrawal, G. P.

Amezcua-Correa, R.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper OTu2D.5.

Andrekson, P. A.

Anjum, O. F.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering,” APL Photon. 4, 022902 (2019).
[Crossref]

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[Crossref]

Awaji, Y.

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper W1C.4.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Barthélémy, A.

Begleris, I.

Bendahmane, A.

Bigo, S.

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper Th.13.C.3.

Bigot, L.

Bigot-Astruc, M.

Bin, P. D.

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[Crossref]

Bolle, C.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
[Crossref]

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper Th.13.C.3.

Boskovic, A.

Burrows, E. C.

Carpenter, J.

Charan, K.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Charlet, G.

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper Th.13.C.3.

Chen, H.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Cheng, J.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Time-domain multimode dispersion measurement in a higher-order-mode fiber,” Opt. Lett. 37, 347–349 (2012).
[Crossref]

Chernikov, S. V.

Chraplyvy, A. R.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Christodoulides, D.

Christodoulides, D. N.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9, 306–310 (2015).
[Crossref]

Correa, R. A.

Couderc, V.

Cui, J.

Y. Yang, J. Cui, S. Fu, M. Tang, and D. Liu, “All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band,” IEEE J. Sel. Top. Quantum Electron. 26, 4500307 (2020).
[Crossref]

Demas, J.

Desgroseilliers, M.

Dong, X.

J. Su, X. Dong, and C. Lu, “Characteristics of few mode fiber under bending,” IEEE J. Sel. Top. Quantum Electron. 22, 139–145 (2016).
[Crossref]

Dupiol, R.

Eftekhar, M. A.

Eggleton, B. J.

Esmaeelpour, M.

Essiambre, R.

M. Esmaeelpour, R. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power fluctuations of intermodal four-wave mixing in few-mode fibers,” J. Lightwave Technol. 35, 2429–2435 (2017).
[Crossref]

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Essiambre, R. J.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
[Crossref]

Essiambre, R.-J.

Eznaveh, Z. S.

Fabert, M.

Fatome, J.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Fontaine, N. K.

M. Esmaeelpour, R. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power fluctuations of intermodal four-wave mixing in few-mode fibers,” J. Lightwave Technol. 35, 2429–2435 (2017).
[Crossref]

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Friis, S. M. M.

Fu, S.

Y. Yang, J. Cui, S. Fu, M. Tang, and D. Liu, “All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band,” IEEE J. Sel. Top. Quantum Electron. 26, 4500307 (2020).
[Crossref]

Gnauck, A. H.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
[Crossref]

Gross, S.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Gruner-Nielsen, L.

Grüner-Nielsen, L.

J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Time-domain multimode dispersion measurement in a higher-order-mode fiber,” Opt. Lett. 37, 347–349 (2012).
[Crossref]

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Guasoni, M.

Hasegawa, T.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering,” APL Photon. 4, 022902 (2019).
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper W1C.4.

Horak, P.

Huang, B.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper OTu2D.5.

Inoue, K.

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10, 1553–1561 (1992).
[Crossref]

Jakobsen, D.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Time-domain multimode dispersion measurement in a higher-order-mode fiber,” Opt. Lett. 37, 347–349 (2012).
[Crossref]

Jiang, X.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Jopson, R. M.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Jung, Y.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering,” APL Photon. 4, 022902 (2019).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

Karlsson, M.

Kazovsky, L. G.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

Koebele, C.

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper Th.13.C.3.

Kozlov, V. V.

Krupa, K.

Labonté, L.

Levring, O. A.

Li, G.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper OTu2D.5.

Li, X.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper OTu2D.5.

Lingle, R.

M. Esmaeelpour, R. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power fluctuations of intermodal four-wave mixing in few-mode fibers,” J. Lightwave Technol. 35, 2429–2435 (2017).
[Crossref]

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
[Crossref]

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Liu, D.

Y. Yang, J. Cui, S. Fu, M. Tang, and D. Liu, “All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band,” IEEE J. Sel. Top. Quantum Electron. 26, 4500307 (2020).
[Crossref]

Liu, X.

Lopez, J. A.

Lopez-Galmiche, G.

Lorences-Riesgo, A.

Lu, C.

J. Su, X. Dong, and C. Lu, “Characteristics of few mode fiber under bending,” IEEE J. Sel. Top. Quantum Electron. 22, 139–145 (2016).
[Crossref]

Luís, R. S.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper W1C.4.

Mafi, A.

Marhic, M. E.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

McCurdy, A. H.

McKinstrie, C. J.

Mestre, M. A.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Millot, G.

Milord, L.

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper Th.13.C.3.

Modotto, D.

Mumtaz, S.

Nakajima, K.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14, 492–494 (2002).
[Crossref]

Nazemosadat, E.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Ohashi, M.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14, 492–494 (2002).
[Crossref]

Parmigiani, F.

Peckham, D. W.

Pedersen, M. E. V.

J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Time-domain multimode dispersion measurement in a higher-order-mode fiber,” Opt. Lett. 37, 347–349 (2012).
[Crossref]

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Petropoulos, P.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering,” APL Photon. 4, 022902 (2019).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

Pourbeyram, H.

Prabhakar, G.

Puttnam, B. J.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper W1C.4.

Rademacher, G.

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper W1C.4.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Radic, S.

Ramachandran, S.

Randel, S.

Raymer, M. G.

Richardson, D. J.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering,” APL Photon. 4, 022902 (2019).
[Crossref]

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal four-wave mixing and parametric amplification in kilometer-long multimode fibers,” J. Lightwave Technol. 35, 5296–5305 (2017).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Riesen, N.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Rishøj, L.

Rottwitt, K.

Ryf, R.

M. Esmaeelpour, R. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power fluctuations of intermodal four-wave mixing in few-mode fibers,” J. Lightwave Technol. 35, 2429–2435 (2017).
[Crossref]

Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22, 32039–32059 (2014).
[Crossref]

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
[Crossref]

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper Th.13.C.3.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Salsi, M.

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper Th.13.C.3.

Schröder, J.

Sierra, A.

Sillard, P.

H. Zhang, M. Bigot-Astruc, L. Bigot, P. Sillard, and J. Fatome, “Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber,” Opt. Express 27, 15413–15425 (2019).
[Crossref]

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper Th.13.C.3.

Stolen, R.

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[Crossref]

Stolen, R. H.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[Crossref]

Su, J.

J. Su, X. Dong, and C. Lu, “Characteristics of few mode fiber under bending,” IEEE J. Sel. Top. Quantum Electron. 22, 139–145 (2016).
[Crossref]

Sun, Y.

M. Esmaeelpour, R. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power fluctuations of intermodal four-wave mixing in few-mode fibers,” J. Lightwave Technol. 35, 2429–2435 (2017).
[Crossref]

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Suzuki, M.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering,” APL Photon. 4, 022902 (2019).
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper W1C.4.

Sylvestre, T.

Tang, M.

Y. Yang, J. Cui, S. Fu, M. Tang, and D. Liu, “All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band,” IEEE J. Sel. Top. Quantum Electron. 26, 4500307 (2020).
[Crossref]

Tanzilli, S.

Taylor, J. R.

Thomsen, B. C.

Tkach, R. W.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

Tonello, A.

Toulouse, J.

Tulino, A. M.

Uesaka, K.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

Wabnitz, S.

Wada, N.

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper W1C.4.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Wang, K.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Time-domain multimode dispersion measurement in a higher-order-mode fiber,” Opt. Lett. 37, 347–349 (2012).
[Crossref]

Wilkinson, T. D.

Winzer, P. J.

Wise, F.

Wise, F. W.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9, 306–310 (2015).
[Crossref]

Withford, M.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

Wong, K. K. Y.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

Wright, L. G.

Xiao, Y.

Xu, C.

J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Time-domain multimode dispersion measurement in a higher-order-mode fiber,” Opt. Lett. 37, 347–349 (2012).
[Crossref]

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

Yamamoto, Y.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering,” APL Photon. 4, 022902 (2019).
[Crossref]

Yang, Y.

Y. Yang, J. Cui, S. Fu, M. Tang, and D. Liu, “All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band,” IEEE J. Sel. Top. Quantum Electron. 26, 4500307 (2020).
[Crossref]

Zhan, Q.

Zhang, H.

Zhao, N.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper OTu2D.5.

Adv. Opt. Photon. (1)

APL Photon. (1)

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering,” APL Photon. 4, 022902 (2019).
[Crossref]

Appl. Phys. Lett. (2)

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101, 161106 (2012).
[Crossref]

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[Crossref]

J. Su, X. Dong, and C. Lu, “Characteristics of few mode fiber under bending,” IEEE J. Sel. Top. Quantum Electron. 22, 139–145 (2016).
[Crossref]

Y. Yang, J. Cui, S. Fu, M. Tang, and D. Liu, “All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band,” IEEE J. Sel. Top. Quantum Electron. 26, 4500307 (2020).
[Crossref]

IEEE Photon. Technol. Lett. (2)

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25, 539–542 (2013).
[Crossref]

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14, 492–494 (2002).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. B (3)

Nat. Photonics (2)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9, 306–310 (2015).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Photon. Res. (1)

Phys. Rev. A (1)

M. Guasoni, “Generalized modulational instability in multimode fibers: wideband multimode parametric amplification,” Phys. Rev. A 92, 033849 (2015).
[Crossref]

Other (5)

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40 km transmission of five mode division multiplexed data streams at 100  Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper Th.13.C.3.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper OTu2D.5.

G. Rademacher, R. Ryf, N. K. Fontaine, H. Chen, R. M. Jopson, R. Essiambre, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, S. Gross, N. Riesen, M. Withford, Y. Sun, and R. Lingle, “Experimental investigation of parametric mode and wavelength conversion in a 4.7 km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p. 1.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper W1C.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Schematic of the intramodal and intermodal FWM processes. The colors represent the spatial modes of the waves. (b) The inverse group velocity (β1) versus angular frequency relation required for phase matching in the intermodal processes. The dashed lines indicate the β1 values at the average frequency of the two waves in each mode, which should be equal.
Fig. 2.
Fig. 2. (a) Designed and measured refractive index profiles of the fabricated HNL-FMF at 1550 nm. The effective refractive index of the supported modes and their transverse mode profiles are also shown. (b) Relative inverse group velocity curves of the modes of the designed fiber and (c) those of the modes when the core radius or α parameters are changed ±1% from their optimal values.
Fig. 3.
Fig. 3. SLM apparatus when used as the MMUX for mode excitation of the fabricated HNL-FMF. PBS, polarizing beam splitter; λ/2, half-wave plate.
Fig. 4.
Fig. 4. Measured OTDR curves of both MGs.
Fig. 5.
Fig. 5. Setup of time-domain pulse response measurement, where GSa/s stands for gigasamples per second.
Fig. 6.
Fig. 6. Spectrogram of fiber pulse response over the C band. Inset: β2 of each eigenmode over the C band.
Fig. 7.
Fig. 7. Setup of CW-SPM nonlinear coefficient measurement.
Fig. 8.
Fig. 8. SPM spectra of the beating signal after propagation in different MGs. Inset: relationship between the SPM phase shift and the power ratio of the zero- and first-order harmonics, according to Ref. [36]. The two markers in the inset correspond to the power ratios of MGs labeled in the main figure.
Fig. 9.
Fig. 9. Experimental setup for intermodal FWM. Signal and Pump 1 are connected with the HE11 port of the MMUX, while Pump 2 and Pump 3 are connected with the HE21 port and TE01 port, respectively.
Fig. 10.
Fig. 10. Output spectra after mode demultiplexing. Two different MGs are received separately by changing the corresponding phase pattern in the MDMUX. For easier observation, a redshift of 0.1 nm is intentionally added on the spectrum when receiving the HE11 mode. Dashed lines indicate the cross talk from one MG to the other.
Fig. 11.
Fig. 11. Spectra of conversion efficiency when the signal wavelength varies from 1549.6 to 1546 nm. The blue curves correspond to the BS idlers, while the orange curves correspond to the PC idlers. The dashed-dotted curves correspond to the CE curves found through simulations, and the black dashed line shows where Pump 2 is located.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δβ(ωsωp)[β1a(ωs+ωp2)β1b(ωi+ωq2)],
β2=λ22πcdβ1dλ.

Metrics