Abstract

We demonstrate a passively mode-locked all-fiber laser generating cylindrical vector beams (CVBs) only using a symmetric two-mode fiber optical coupler (TMF-OC) for both high-order mode excitation and splitting. Theoretical analyses show that for a symmetric TMF-OC with appropriate taper diameter, the second-order mode can be excited and coupled into output tap with high purity due to the effective index difference of different modes. Based on the fabricated TMF-OC, the passively mode-locked fiber laser delivers pulsed CVBs at a center wavelength of 1564.4 nm with 3 dB linewidth of 11.2 nm, pulse duration of 2.552 ps, and repetition rate of 3.96 MHz. The purity of both radially and azimuthally polarized beams is estimated to be over 91%. Due to simple fabrication method of the TMF-OC and high purity of the generated CVBs, this mode-locked CVB fiber laser with all-fiber configuration has potential applications in optical trapping, optical communications, material processing, etc.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler

Hongdan Wan, Jie Wang, Zuxing Zhang, Yu Cai, Bin Sun, and Lin Zhang
Opt. Express 25(10) 11444-11451 (2017)

Dispersion-managed, high-order mode emission, Tm/Ho-co-doped fiber laser based on a mode-selective coupler

Su Chen, Yang Xu, Yu Cai, Jianping Shen, and Zuxing Zhang
J. Opt. Soc. Am. B 36(10) 2688-2693 (2019)

Intracavity cylindrical vector beam generation from all-PM Er-doped mode-locked fiber laser

Yuwei Zhao, Jintao Fan, Haosen Shi, Yuepeng Li, Youjian Song, and Minglie Hu
Opt. Express 27(6) 8808-8818 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  2. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
    [Crossref]
  3. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
    [Crossref]
  4. Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett. 31, 1794–1796 (2006).
    [Crossref]
  5. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref]
  6. J. L. Li, K. Ueda, M. Musha, A. Shirakawa, and L. X. Zhong, “Generation of radially polarized mode in Yb fiber laser by using a dual conical prism,” Opt. Lett. 31, 2969–2971 (2006).
    [Crossref]
  7. M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express 19, 1905–1914 (2011).
    [Crossref]
  8. S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
    [Crossref]
  9. D. Lin, K. Xia, J. Li, R. Li, K. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett. 35, 2290–2292 (2010).
    [Crossref]
  10. D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43, 1590–1593 (2018).
    [Crossref]
  11. Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2017).
    [Crossref]
  12. H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25, 11444–11451 (2017).
    [Crossref]
  13. R. Ismaeel, T. Lee, B. Oduro, Y. M. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22, 11610–11619 (2014).
    [Crossref]
  14. F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
    [Crossref]
  15. G. Pelegrina-Bonilla, K. Hausmann, H. Sayinc, U. Morgner, J. Neumann, and D. Kracht, “Analysis of the modal evolution in fused-type mode-selective fiber couplers,” Opt. Express 23, 22977–22990 (2015).
    [Crossref]
  16. Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 43, 548–550 (2016).
    [Crossref]
  17. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37, 464–466 (2012).
    [Crossref]
  18. J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
    [Crossref]
  19. G. Yin, C. Liang, I. P. Ikechukwu, M. Deng, L. Shi, Q. Fu, T. Zhu, and L. Zhang, “Orbital angular momentum generation in two-mode fiber, based on the modal interference principle,” Opt. Lett. 44, 999–1002 (2019).
    [Crossref]
  20. B. S. Kawasaki, K. O. Hill, and R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Opt. Lett. 6, 327–328 (1981).
    [Crossref]
  21. J. Lin, K. Yan, Y. Zhou, L. X. Xu, C. Gu, and Q. W. Zhan, “Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation,” Appl. Phys. Lett. 107, 191108 (2005).
    [Crossref]
  22. D. J. Richardso, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [Crossref]
  23. V. A. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. Grüner Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7  Tb/s (96 × 3 × 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express 20, B428–B438 (2012).
    [Crossref]
  24. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6 × 56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19, 16697–16707 (2011).
    [Crossref]
  25. Y. Jung, R. Chen, R. Ismaeel, S.-U. Alam, I. P. Giles, and D. J. Richardson, “Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission,” Opt. Express 21, 24326–24331 (2013).
    [Crossref]
  26. L. Huang, J. Wang, W. Peng, W. Zhang, F. Bo, X. Yu, F. Gao, P. Chang, X. Song, G. Zhang, and J. Xu, “Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter,” Opt. Lett. 41, 638–641 (2016).
    [Crossref]
  27. B. Sun, F. Fang, Z. Zhang, J. Xu, and L. Zhang, “High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference,” Opt. Lett. 43, 1311–1314 (2018).
    [Crossref]
  28. S. Pidishety, B. Srinivas, and G. Brambilla, “All-fiber fused coupler for stable generation of radially and azimuthally polarized beams,” IEEE Photon. Technol. Lett. 29, 31–34 (2017).
    [Crossref]

2019 (1)

2018 (2)

2017 (4)

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2017).
[Crossref]

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25, 11444–11451 (2017).
[Crossref]

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

S. Pidishety, B. Srinivas, and G. Brambilla, “All-fiber fused coupler for stable generation of radially and azimuthally polarized beams,” IEEE Photon. Technol. Lett. 29, 31–34 (2017).
[Crossref]

2016 (2)

L. Huang, J. Wang, W. Peng, W. Zhang, F. Bo, X. Yu, F. Gao, P. Chang, X. Song, G. Zhang, and J. Xu, “Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter,” Opt. Lett. 41, 638–641 (2016).
[Crossref]

Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 43, 548–550 (2016).
[Crossref]

2015 (1)

2014 (2)

R. Ismaeel, T. Lee, B. Oduro, Y. M. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22, 11610–11619 (2014).
[Crossref]

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
[Crossref]

2013 (4)

Y. Jung, R. Chen, R. Ismaeel, S.-U. Alam, I. P. Giles, and D. J. Richardson, “Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission,” Opt. Express 21, 24326–24331 (2013).
[Crossref]

D. J. Richardso, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

2012 (2)

2011 (2)

2010 (1)

2009 (1)

2007 (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

2006 (2)

2005 (1)

J. Lin, K. Yan, Y. Zhou, L. X. Xu, C. Gu, and Q. W. Zhan, “Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation,” Appl. Phys. Lett. 107, 191108 (2005).
[Crossref]

2000 (1)

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref]

1981 (1)

Alam, S. U.

Alam, S.-U.

Bo, F.

Bolle, C. A.

Brambilla, G.

S. Pidishety, B. Srinivas, and G. Brambilla, “All-fiber fused coupler for stable generation of radially and azimuthally polarized beams,” IEEE Photon. Technol. Lett. 29, 31–34 (2017).
[Crossref]

R. Ismaeel, T. Lee, B. Oduro, Y. M. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22, 11610–11619 (2014).
[Crossref]

Burger, L.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

Cai, Y.

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2017).
[Crossref]

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25, 11444–11451 (2017).
[Crossref]

Chang, P.

Chen, H.

Chen, R.

Chiang, K. S.

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
[Crossref]

Chung, D.

Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 43, 548–550 (2016).
[Crossref]

Corbett, B.

Cui, X.

de Waardt, H.

Deng, M.

Dhar, A.

Dong, J.

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
[Crossref]

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Ellis, A. D.

Essiambre, R. J.

Fang, F.

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Fini, J. M.

D. J. Richardso, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Forbes, A.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

Fu, Q.

Gao, F.

Giles, I. P.

Gnauck, A. H.

Grüner Nielsen, L.

Gu, C.

Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 43, 548–550 (2016).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37, 464–466 (2012).
[Crossref]

J. Lin, K. Yan, Y. Zhou, L. X. Xu, C. Gu, and Q. W. Zhan, “Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation,” Appl. Phys. Lett. 107, 191108 (2005).
[Crossref]

Hausmann, K.

He, Z.

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref]

Hill, K. O.

Huang, L.

Ikechukwu, I. P.

Inan, B.

Ismaeel, R.

Jiang, B.

Jung, Y.

Jung, Y. M.

Kawasaki, B. S.

Koonen, A. M. J.

Kracht, D.

Kuschnerov, M.

Lamont, R. G.

Lee, J.

Lee, T.

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Li, F.

Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 43, 548–550 (2016).
[Crossref]

Li, G.

Li, J.

Li, J. L.

Li, M.

Li, R.

Li, X.

Liang, C.

Lin, D.

Lin, J.

J. Lin, K. Yan, Y. Zhou, L. X. Xu, C. Gu, and Q. W. Zhan, “Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation,” Appl. Phys. Lett. 107, 191108 (2005).
[Crossref]

Lin, Z.

Lingle, R.

Litvin, I.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

Lu, H.

Mao, D.

McCurdy, A.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Ming, H.

Morgner, U.

Musha, M.

Nelson, L. E.

D. J. Richardso, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Neumann, J.

Ngcobo, S.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

Novotny, L.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref]

Oduro, B.

Pang, F.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

Peckham, D. W.

Pelegrina-Bonilla, G.

Peng, W.

Pidishety, S.

S. Pidishety, B. Srinivas, and G. Brambilla, “All-fiber fused coupler for stable generation of radially and azimuthally polarized beams,” IEEE Photon. Technol. Lett. 29, 31–34 (2017).
[Crossref]

Poletti, F.

Randel, S.

Richardso, D. J.

D. J. Richardso, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Richardson, D. J.

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Ruffin, P.

Ryf, R.

Sahu, J. K.

Sayinc, H.

Senatsky, Y.

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Shi, F.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

Shi, L.

Shirakawa, A.

Sick, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref]

Sierra, A.

Sleiffer, V. A.

Song, X.

Srinivas, B.

S. Pidishety, B. Srinivas, and G. Brambilla, “All-fiber fused coupler for stable generation of radially and azimuthally polarized beams,” IEEE Photon. Technol. Lett. 29, 31–34 (2017).
[Crossref]

Sun, B.

Sun, Y.

Thirugnanasambandam, M. P.

Ueda, K.

van Uden, R. G. H.

Veljanovski, V.

Wan, H.

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2017).
[Crossref]

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25, 11444–11451 (2017).
[Crossref]

Wang, A.

Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 43, 548–550 (2016).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37, 464–466 (2012).
[Crossref]

Wang, F.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

Wang, J.

Wang, T.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

Winfield, R.

Winzer, P. J.

Xia, K.

Xu, J.

Xu, L.

Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 43, 548–550 (2016).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37, 464–466 (2012).
[Crossref]

Xu, L. X.

J. Lin, K. Yan, Y. Zhou, L. X. Xu, C. Gu, and Q. W. Zhan, “Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation,” Appl. Phys. Lett. 107, 191108 (2005).
[Crossref]

Yan, K.

J. Lin, K. Yan, Y. Zhou, L. X. Xu, C. Gu, and Q. W. Zhan, “Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation,” Appl. Phys. Lett. 107, 191108 (2005).
[Crossref]

Yin, G.

Yin, S.

Yong, Z.

Yu, X.

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Zeng, X.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

Zhan, C.

Zhan, Q.

Zhan, Q. W.

J. Lin, K. Yan, Y. Zhou, L. X. Xu, C. Gu, and Q. W. Zhan, “Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation,” Appl. Phys. Lett. 107, 191108 (2005).
[Crossref]

Zhang, G.

Zhang, L.

Zhang, W.

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Zhang, Z.

Zhao, J.

Zhong, L. X.

Zhou, Y.

Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 43, 548–550 (2016).
[Crossref]

J. Lin, K. Yan, Y. Zhou, L. X. Xu, C. Gu, and Q. W. Zhan, “Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation,” Appl. Phys. Lett. 107, 191108 (2005).
[Crossref]

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Zhu, T.

Adv. Opt. Photon. (1)

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Appl. Phys. Lett. (1)

J. Lin, K. Yan, Y. Zhou, L. X. Xu, C. Gu, and Q. W. Zhan, “Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation,” Appl. Phys. Lett. 107, 191108 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
[Crossref]

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

S. Pidishety, B. Srinivas, and G. Brambilla, “All-fiber fused coupler for stable generation of radially and azimuthally polarized beams,” IEEE Photon. Technol. Lett. 29, 31–34 (2017).
[Crossref]

Nat. Commun. (2)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

Nat. Photonics (1)

D. J. Richardso, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Opt. Express (7)

V. A. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. Grüner Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7  Tb/s (96 × 3 × 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express 20, B428–B438 (2012).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6 × 56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19, 16697–16707 (2011).
[Crossref]

Y. Jung, R. Chen, R. Ismaeel, S.-U. Alam, I. P. Giles, and D. J. Richardson, “Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission,” Opt. Express 21, 24326–24331 (2013).
[Crossref]

M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express 19, 1905–1914 (2011).
[Crossref]

G. Pelegrina-Bonilla, K. Hausmann, H. Sayinc, U. Morgner, J. Neumann, and D. Kracht, “Analysis of the modal evolution in fused-type mode-selective fiber couplers,” Opt. Express 23, 22977–22990 (2015).
[Crossref]

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25, 11444–11451 (2017).
[Crossref]

R. Ismaeel, T. Lee, B. Oduro, Y. M. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22, 11610–11619 (2014).
[Crossref]

Opt. Lett. (10)

G. Yin, C. Liang, I. P. Ikechukwu, M. Deng, L. Shi, Q. Fu, T. Zhu, and L. Zhang, “Orbital angular momentum generation in two-mode fiber, based on the modal interference principle,” Opt. Lett. 44, 999–1002 (2019).
[Crossref]

B. S. Kawasaki, K. O. Hill, and R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Opt. Lett. 6, 327–328 (1981).
[Crossref]

Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 43, 548–550 (2016).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37, 464–466 (2012).
[Crossref]

Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett. 31, 1794–1796 (2006).
[Crossref]

D. Lin, K. Xia, J. Li, R. Li, K. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett. 35, 2290–2292 (2010).
[Crossref]

D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43, 1590–1593 (2018).
[Crossref]

J. L. Li, K. Ueda, M. Musha, A. Shirakawa, and L. X. Zhong, “Generation of radially polarized mode in Yb fiber laser by using a dual conical prism,” Opt. Lett. 31, 2969–2971 (2006).
[Crossref]

L. Huang, J. Wang, W. Peng, W. Zhang, F. Bo, X. Yu, F. Gao, P. Chang, X. Song, G. Zhang, and J. Xu, “Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter,” Opt. Lett. 41, 638–641 (2016).
[Crossref]

B. Sun, F. Fang, Z. Zhang, J. Xu, and L. Zhang, “High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference,” Opt. Lett. 43, 1311–1314 (2018).
[Crossref]

Phys. Rev. Lett. (1)

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of the symmetric TMF-OC.
Fig. 2.
Fig. 2. Mode effective indices of the LP01 and LP11 modes in the TMF versus different fiber diameters at the wavelength of 1550 nm; the inset represents the enlarged part with a tapered fiber diameter from 20 to 70 μm.
Fig. 3.
Fig. 3. (a) LP01 mode intensity distribution and (b) its power exchange in the coupling region; (c) LP11 mode intensity distribution and (d) its power exchange in the coupling region.
Fig. 4.
Fig. 4. (a) Relationship between the pulled length and the coupling efficiency; the inset represents the relationship between the pulled length and the diameter of the tapered fiber. (b) Output power from port 2 and port 3 of the TMF-OC. Microscopic images of the TMF-OC at the coupling region: (c) at the beginning of coupling and (d) when LP01 mode is observed from port 3 by a CCD camera.
Fig. 5.
Fig. 5. CCD images of the LP11 mode excited in the second TMF at different launching wavelengths.
Fig. 6.
Fig. 6. Schematic of the passively mode-locked all-fiber laser with a TMF-OC for CVB generation.
Fig. 7.
Fig. 7. (a) Mode-locked output spectrum and (b) corresponding pulse train at pump power of 150 mW.
Fig. 8.
Fig. 8. (a) RF spectrum of the mode-locked laser output measured with 100 Hz frequency span and 1 Hz RBW; inset is RF spectrum with span range of 1 GHz. (b) Measured autocorrelation trace and its sech2 fitting.
Fig. 9.
Fig. 9. Laser output power versus pump power (black curve from output 1 and red curve from output 2).
Fig. 10.
Fig. 10. Intensity distributions of (a) radial polarization beam and (f) azimuthal polarization beam without polarizer; (b)–(e) show the intensity distributions of the radial polarization beam after passing a linear polarizer; (g)–(j) show the intensity distributions of the azimuthal polarization beam after passing a linear polarizer. Arrows indicate the orientations of the linear polarizer.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dA1(z)dz=jK21A2(z)ej(β1β2)z,
dA2(z)dz=jK12A1(z)ej(β2β1)z.
A2(L)=jK120LA1(z)ej(β2β1)zdz.