Abstract

Transparent ceramics are emerging as future materials for lasers, scintillation, and illumination. In this paper, an interesting and surprising phenomenon in YAG transparent ceramics is reported. UV light leads to significant changes in the microstructure of open volume defects and nano clusters as well as in the optical properties. Light-induced lattice relaxation is suggested as the mechanism behind this intriguing behavior. The complex F-type color center with broad absorption bands is caused by the aliovalent sintering additives (Ca2+/Mg2+) and Fe ion impurities. Two individual peaks in the thermoluminescence spectra illustrate both shallow and deep level traps. From positron annihilation lifetime data, vacancy clusters and nanovoids are detected and characterized, although these free-volume defects could not be observed by high-resolution transmission electron microscopy. The solarization induced by UV irradiation is associated with a change in the structure and size of defect clusters due to lattice relaxation. Therefore, this work shows how UV irradiation leads not only to a change in the charge state of defects, but also to a permanent change in defect structure and size. It significantly affects the optical properties of YAG ceramics and their performance in lasers and other optical applications. These results are crucial for advancing transparent ceramics technology.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Effect of air annealing on the optical properties and laser performance of Nd:YAG transparent ceramics

Yuelong Fu, Jiang Li, Yang Liu, Lei Liu, Hong Zhao, and Yubai Pan
Opt. Mater. Express 4(10) 2108-2115 (2014)

Synthesis and characterization of structural and optical properties of Ce, U codoped YAG transparent ceramics

Cai Gong, Jian Chen, Qiufeng Huang, Zhonghua Deng, Zhuguang Liu, Chuibing Xue, Guojing Li, Jiquan Huang, and Wang Guo
Opt. Mater. Express 8(5) 1274-1281 (2018)

Synthesis and characterization of Ce:YAG nano-phosphors and ceramics

F. A. Selim, A. Khamehchi, D. Winarski, and S. Agarwal
Opt. Mater. Express 6(12) 3704-3715 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2, 721–727 (2008).
    [Crossref]
  2. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
    [Crossref]
  3. H. Furuse, Y. Koike, and R. Yasuhara, “Sapphire/Nd:YAG composite by pulsed electric current bonding for high-average-power lasers,” Opt. Lett. 43, 3065–3068 (2018).
    [Crossref]
  4. S. Bigotta, L. Galecki, A. Katz, J. Bohmler, S. Lemonnier, E. Barraud, A. Leriche, and M. Eichhorn, “Resonantly pumped eye-safe Er3+:YAG SPS-HIP ceramic laser,” Opt. Express 26, 3435–3442 (2018).
    [Crossref]
  5. A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
    [Crossref]
  6. H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, S. Shimizu, and R. Yasuhara, “Optimization of laser emission at 2.8  μm by Er:Lu2O3 ceramics,” Opt. Express 26, 3497–3507 (2018).
    [Crossref]
  7. N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
    [Crossref]
  8. C. Ma, J. Zhu, K. Liu, F. Tang, J. Long, Z. Wen, R. Ma, X. Yuan, W. Guo, J. Li, and Y. Cao, “Longitudinally diode-pumped planar waveguide YAG/Yb:LuAG/YAG ceramic laser at 1030.7  nm,” Opt. Lett. 41, 3317–3319 (2016).
    [Crossref]
  9. B. Villars, E. S. Hill, and C. G. Durfee, “Design and development of a high-power LED-pumped Ce:Nd:YAG laser,” Opt. Lett. 40, 3049–3052 (2015).
    [Crossref]
  10. R. Boulesteix, A. Maitre, J. F. Baumard, Y. Rabinovitch, and F. Reynaud, “Light scattering by pores in transparent Nd:YAG ceramics for lasers: correlations between microstructure and optical properties,” Opt. Express 18, 14992–15002 (2010).
    [Crossref]
  11. A. Ikesue and K. Yoshida, “Influence of pore volume on laser performance of Nd:YAG ceramics,” J. Mater. Sci. 34, 1189–1195 (1999).
    [Crossref]
  12. K. Hasegawa, T. Ichikawa, S. Mizuno, Y. Takeda, H. Ito, A. Ikesue, T. Motohiro, and M. Yamaga, “Energy transfer efficiency from Cr3+ to Nd3+ in solar-pumped laser using transparent Nd/Cr:Y3Al5O12 ceramics,” Opt. Express 23, A519–A524 (2015).
    [Crossref]
  13. H. Yagi, T. Yanagitani, and K.-I. Ueda, “Nd3+:Y3Al5O12 laser ceramics: flashlamp pumped laser operation with a UV cut filter,” J. Alloy. Compd. 421, 195–199 (2006).
    [Crossref]
  14. L. Wen, X. D. Sun, Z. Xiu, S. W. Chen, and C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc. 24, 2681–2688 (2004).
    [Crossref]
  15. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
    [Crossref]
  16. M. Bass and A. E. Paladino, “Color centers in yttrium gallium garnet and yttrium aluminum garnet,” J. Appl. Phys. 38, 2706–2707 (1967).
    [Crossref]
  17. K. Mori, “Transient colour centres caused by UV light irradiation in yttrium aluminum garnet crystals,” Phys. Status Solidi A 42, 375–384 (1977).
    [Crossref]
  18. A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93, 191902 (2008).
    [Crossref]
  19. M. M. Kuklja and R. Pandey, “Atomistic modeling of native point defects in yttrium aluminum garnet crystals,” J. Am. Ceram. Soc. 82, 2881–2886 (1999).
    [Crossref]
  20. S. Rotman, R. Tandon, and H. Tuller, “Defect-property correlations in garnet crystals: the electrical conductivity and defect structure of luminescent cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 57, 1951–1955 (1985).
    [Crossref]
  21. S. Rotman, H. Tuller, and C. Warde, “Defect-property correlations in garnet crystals. VI. The electrical conductivity, defect structure, and optical properties of luminescent calcium and cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 71, 1209–1214 (1992).
    [Crossref]
  22. C. Brecher, G. C. Wei, and W. H. Rhodes, “Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria,” J. Am. Ceram. Soc. 73, 1473–1488 (1990).
    [Crossref]
  23. L. Brock, K. Mishra, M. Raukas, W. P. Lapatovich, and G. C. Wei, “Color centers in magnesium doped polycrystalline alumina,” MRS Online Proc. Library Archive 667, G7 (2001).
    [Crossref]
  24. H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
    [Crossref]
  25. E. Zych, C. Brecher, and H. Lingertat, “Depletion of high-energy carriers in YAG optical ceramic materials,” Spectrochim. Acta A 54, 1771–1777 (1998).
    [Crossref]
  26. S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
    [Crossref]
  27. L. Zhang, T. Zhou, F. A. Selim, and H. Chen, “Single CaO accelerated densification and microstructure control of highly transparent YAG ceramic,” J. Am. Ceram. Soc. 101, 703–712 (2018).
    [Crossref]
  28. L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
    [Crossref]
  29. F. Selim, A. Khamehchi, D. Winarski, and S. Agarwal, “Synthesis and characterization of Ce:YAG nano-phosphors and ceramics,” Opt. Mater. Express 6, 3704–3715 (2016).
    [Crossref]
  30. J. Ji, L. Boatner, and F. Selim, “Donor characterization in ZnO by thermally stimulated luminescence,” Appl. Phys. Lett. 105, 041102 (2014).
    [Crossref]
  31. P. Husband, I. Bartošová, V. Slugeň, and F. Selim, “Positron annihilation in transparent ceramics,” J. Phys. Conf. Ser. 674, 012013 (2016).
    [Crossref]
  32. H. Klym, “Study of nanoporous in humidity-sensitive MgAl2O4 ceramics with positron annihilation lifetime spectroscopy,” Semicond. Phys. Quantum Electron. Optoelectron. 14, 109–113 (2011).
    [Crossref]
  33. D. Giebel and J. Kansy, “LT10 program for solving basic problems connected with defect detection,” Phys. Procedia 35, 122–127 (2012).
    [Crossref]
  34. A. J. Stevenson, “The effects of sintering aids on defects, densification, and single crystal conversion of transparent neodymium:YAG ceramics,” Ph.D. thesis (The Pennsylvania State University, 2010).
  35. A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
    [Crossref]
  36. I. S. Akhmadullin, S. A. Migachev, and S. P. Mironov, “Thermo- and photoinduced defects in Y3Al5O12 crystals,” Nucl. Instrum. Meth. B 65, 270–274 (1992).
    [Crossref]
  37. C. R. Varney, D. T. Mackay, A. Pratt, S. M. Reda, and F. A. Selim, “Energy levels of exciton traps in yttrium aluminum garnet single crystals,” J. Appl. Phys. 111, 063505 (2012).
    [Crossref]
  38. F. A. Selim, C. R. Varney, M. C. Tarun, M. C. Rowe, G. S. Collins, and M. D. McCluskey, “Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets,” Phys. Rev. B 88, 174102 (2013).
    [Crossref]
  39. D. T. Mackay, C. R. Varney, J. Buscher, and F. A. Selim, “Study of exciton dynamics in garnets by low temperature thermo-luminescence,” J. Appl. Phys. 112, 023522 (2012).
    [Crossref]
  40. C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D 45, 218–224 (2011).
    [Crossref]
  41. V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, “Luminescence of undoped LuAG and YAG crystals,” Phys. Status Solidi C 2, 97–100 (2005).
    [Crossref]
  42. H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A. I. Popov, “Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics,” Low. Temp. Phys. 42, 601–605 (2016).
    [Crossref]
  43. V. Balitska, J. Filipecki, A. Ingram, and O. Shpotyuk, “Defect characterization methodology in sintered functional spinels with PALS technique,” Phys. Status Solidi C 4, 1317–1320 (2007).
    [Crossref]
  44. O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, and J. Filipecki, “PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics,” J. Eur. Ceram. Soc. 25, 2981–2984 (2005).
    [Crossref]
  45. L. G. Jacobsohn, K. Serivalsatit, C. A. Quarles, and J. Ballato, “Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy,” J. Mater. Sci. 50, 3183–3188 (2015).
    [Crossref]
  46. P. J. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys. 60, 701–779 (1988).
    [Crossref]
  47. K. Ito, H. Nakanishi, and Y. Ujihira, “Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1  nm in radius,” J. Phys. Chem. B 103, 4555–4558 (1999).
    [Crossref]
  48. X. Feng, “Anti-site defects in YAG and LuAG crystals,” J. Inorg. Mater. 25, 785–794 (2010).
    [Crossref]
  49. Y. He, X. Ma, Z. Gui, and L. Li, “Point defect studies on perovskite structured piezoelectric ceramics using positron annihilation,” Acta Phys. Sinica 47, 146–153 (1998).

2018 (4)

2017 (1)

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

2016 (4)

C. Ma, J. Zhu, K. Liu, F. Tang, J. Long, Z. Wen, R. Ma, X. Yuan, W. Guo, J. Li, and Y. Cao, “Longitudinally diode-pumped planar waveguide YAG/Yb:LuAG/YAG ceramic laser at 1030.7  nm,” Opt. Lett. 41, 3317–3319 (2016).
[Crossref]

F. Selim, A. Khamehchi, D. Winarski, and S. Agarwal, “Synthesis and characterization of Ce:YAG nano-phosphors and ceramics,” Opt. Mater. Express 6, 3704–3715 (2016).
[Crossref]

P. Husband, I. Bartošová, V. Slugeň, and F. Selim, “Positron annihilation in transparent ceramics,” J. Phys. Conf. Ser. 674, 012013 (2016).
[Crossref]

H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A. I. Popov, “Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics,” Low. Temp. Phys. 42, 601–605 (2016).
[Crossref]

2015 (4)

L. G. Jacobsohn, K. Serivalsatit, C. A. Quarles, and J. Ballato, “Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy,” J. Mater. Sci. 50, 3183–3188 (2015).
[Crossref]

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

B. Villars, E. S. Hill, and C. G. Durfee, “Design and development of a high-power LED-pumped Ce:Nd:YAG laser,” Opt. Lett. 40, 3049–3052 (2015).
[Crossref]

K. Hasegawa, T. Ichikawa, S. Mizuno, Y. Takeda, H. Ito, A. Ikesue, T. Motohiro, and M. Yamaga, “Energy transfer efficiency from Cr3+ to Nd3+ in solar-pumped laser using transparent Nd/Cr:Y3Al5O12 ceramics,” Opt. Express 23, A519–A524 (2015).
[Crossref]

2014 (1)

J. Ji, L. Boatner, and F. Selim, “Donor characterization in ZnO by thermally stimulated luminescence,” Appl. Phys. Lett. 105, 041102 (2014).
[Crossref]

2013 (1)

F. A. Selim, C. R. Varney, M. C. Tarun, M. C. Rowe, G. S. Collins, and M. D. McCluskey, “Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets,” Phys. Rev. B 88, 174102 (2013).
[Crossref]

2012 (3)

D. T. Mackay, C. R. Varney, J. Buscher, and F. A. Selim, “Study of exciton dynamics in garnets by low temperature thermo-luminescence,” J. Appl. Phys. 112, 023522 (2012).
[Crossref]

D. Giebel and J. Kansy, “LT10 program for solving basic problems connected with defect detection,” Phys. Procedia 35, 122–127 (2012).
[Crossref]

C. R. Varney, D. T. Mackay, A. Pratt, S. M. Reda, and F. A. Selim, “Energy levels of exciton traps in yttrium aluminum garnet single crystals,” J. Appl. Phys. 111, 063505 (2012).
[Crossref]

2011 (3)

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

H. Klym, “Study of nanoporous in humidity-sensitive MgAl2O4 ceramics with positron annihilation lifetime spectroscopy,” Semicond. Phys. Quantum Electron. Optoelectron. 14, 109–113 (2011).
[Crossref]

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D 45, 218–224 (2011).
[Crossref]

2010 (2)

2009 (2)

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
[Crossref]

2008 (2)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2, 721–727 (2008).
[Crossref]

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93, 191902 (2008).
[Crossref]

2007 (2)

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

V. Balitska, J. Filipecki, A. Ingram, and O. Shpotyuk, “Defect characterization methodology in sintered functional spinels with PALS technique,” Phys. Status Solidi C 4, 1317–1320 (2007).
[Crossref]

2006 (1)

H. Yagi, T. Yanagitani, and K.-I. Ueda, “Nd3+:Y3Al5O12 laser ceramics: flashlamp pumped laser operation with a UV cut filter,” J. Alloy. Compd. 421, 195–199 (2006).
[Crossref]

2005 (2)

V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, “Luminescence of undoped LuAG and YAG crystals,” Phys. Status Solidi C 2, 97–100 (2005).
[Crossref]

O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, and J. Filipecki, “PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics,” J. Eur. Ceram. Soc. 25, 2981–2984 (2005).
[Crossref]

2004 (1)

L. Wen, X. D. Sun, Z. Xiu, S. W. Chen, and C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc. 24, 2681–2688 (2004).
[Crossref]

2001 (1)

L. Brock, K. Mishra, M. Raukas, W. P. Lapatovich, and G. C. Wei, “Color centers in magnesium doped polycrystalline alumina,” MRS Online Proc. Library Archive 667, G7 (2001).
[Crossref]

2000 (1)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[Crossref]

1999 (3)

M. M. Kuklja and R. Pandey, “Atomistic modeling of native point defects in yttrium aluminum garnet crystals,” J. Am. Ceram. Soc. 82, 2881–2886 (1999).
[Crossref]

A. Ikesue and K. Yoshida, “Influence of pore volume on laser performance of Nd:YAG ceramics,” J. Mater. Sci. 34, 1189–1195 (1999).
[Crossref]

K. Ito, H. Nakanishi, and Y. Ujihira, “Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1  nm in radius,” J. Phys. Chem. B 103, 4555–4558 (1999).
[Crossref]

1998 (2)

Y. He, X. Ma, Z. Gui, and L. Li, “Point defect studies on perovskite structured piezoelectric ceramics using positron annihilation,” Acta Phys. Sinica 47, 146–153 (1998).

E. Zych, C. Brecher, and H. Lingertat, “Depletion of high-energy carriers in YAG optical ceramic materials,” Spectrochim. Acta A 54, 1771–1777 (1998).
[Crossref]

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

1992 (2)

S. Rotman, H. Tuller, and C. Warde, “Defect-property correlations in garnet crystals. VI. The electrical conductivity, defect structure, and optical properties of luminescent calcium and cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 71, 1209–1214 (1992).
[Crossref]

I. S. Akhmadullin, S. A. Migachev, and S. P. Mironov, “Thermo- and photoinduced defects in Y3Al5O12 crystals,” Nucl. Instrum. Meth. B 65, 270–274 (1992).
[Crossref]

1990 (1)

C. Brecher, G. C. Wei, and W. H. Rhodes, “Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria,” J. Am. Ceram. Soc. 73, 1473–1488 (1990).
[Crossref]

1988 (1)

P. J. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys. 60, 701–779 (1988).
[Crossref]

1985 (1)

S. Rotman, R. Tandon, and H. Tuller, “Defect-property correlations in garnet crystals: the electrical conductivity and defect structure of luminescent cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 57, 1951–1955 (1985).
[Crossref]

1977 (1)

K. Mori, “Transient colour centres caused by UV light irradiation in yttrium aluminum garnet crystals,” Phys. Status Solidi A 42, 375–384 (1977).
[Crossref]

1967 (1)

M. Bass and A. E. Paladino, “Color centers in yttrium gallium garnet and yttrium aluminum garnet,” J. Appl. Phys. 38, 2706–2707 (1967).
[Crossref]

Agarwal, S.

Akhmadullin, I. S.

I. S. Akhmadullin, S. A. Migachev, and S. P. Mironov, “Thermo- and photoinduced defects in Y3Al5O12 crystals,” Nucl. Instrum. Meth. B 65, 270–274 (1992).
[Crossref]

Anderson, J. M.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2, 721–727 (2008).
[Crossref]

Babin, V.

V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, “Luminescence of undoped LuAG and YAG crystals,” Phys. Status Solidi C 2, 97–100 (2005).
[Crossref]

Balitska, V.

V. Balitska, J. Filipecki, A. Ingram, and O. Shpotyuk, “Defect characterization methodology in sintered functional spinels with PALS technique,” Phys. Status Solidi C 4, 1317–1320 (2007).
[Crossref]

Ballato, J.

L. G. Jacobsohn, K. Serivalsatit, C. A. Quarles, and J. Ballato, “Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy,” J. Mater. Sci. 50, 3183–3188 (2015).
[Crossref]

Barraud, E.

Bartošová, I.

P. Husband, I. Bartošová, V. Slugeň, and F. Selim, “Positron annihilation in transparent ceramics,” J. Phys. Conf. Ser. 674, 012013 (2016).
[Crossref]

Bass, M.

M. Bass and A. E. Paladino, “Color centers in yttrium gallium garnet and yttrium aluminum garnet,” J. Appl. Phys. 38, 2706–2707 (1967).
[Crossref]

Baumard, J. F.

Bednarcik, J.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Bigotta, S.

Blazek, K.

V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, “Luminescence of undoped LuAG and YAG crystals,” Phys. Status Solidi C 2, 97–100 (2005).
[Crossref]

Boatner, L.

J. Ji, L. Boatner, and F. Selim, “Donor characterization in ZnO by thermally stimulated luminescence,” Appl. Phys. Lett. 105, 041102 (2014).
[Crossref]

Bohmler, J.

Boulesteix, R.

Brecher, C.

E. Zych, C. Brecher, and H. Lingertat, “Depletion of high-energy carriers in YAG optical ceramic materials,” Spectrochim. Acta A 54, 1771–1777 (1998).
[Crossref]

C. Brecher, G. C. Wei, and W. H. Rhodes, “Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria,” J. Am. Ceram. Soc. 73, 1473–1488 (1990).
[Crossref]

Brock, L.

L. Brock, K. Mishra, M. Raukas, W. P. Lapatovich, and G. C. Wei, “Color centers in magnesium doped polycrystalline alumina,” MRS Online Proc. Library Archive 667, G7 (2001).
[Crossref]

Buscher, J.

D. T. Mackay, C. R. Varney, J. Buscher, and F. A. Selim, “Study of exciton dynamics in garnets by low temperature thermo-luminescence,” J. Appl. Phys. 112, 023522 (2012).
[Crossref]

Cao, Y.

Chen, H.

L. Zhang, T. Zhou, F. A. Selim, and H. Chen, “Single CaO accelerated densification and microstructure control of highly transparent YAG ceramic,” J. Am. Ceram. Soc. 101, 703–712 (2018).
[Crossref]

Chen, S. W.

L. Wen, X. D. Sun, Z. Xiu, S. W. Chen, and C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc. 24, 2681–2688 (2004).
[Crossref]

Collins, G. S.

F. A. Selim, C. R. Varney, M. C. Tarun, M. C. Rowe, G. S. Collins, and M. D. McCluskey, “Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets,” Phys. Rev. B 88, 174102 (2013).
[Crossref]

Dickey, E. C.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

Dumm, J. Q.

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

Durfee, C. G.

Eichhorn, M.

Feigelson, R.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93, 191902 (2008).
[Crossref]

Feng, X.

X. Feng, “Anti-site defects in YAG and LuAG crystals,” J. Inorg. Mater. 25, 785–794 (2010).
[Crossref]

Filipecki, J.

V. Balitska, J. Filipecki, A. Ingram, and O. Shpotyuk, “Defect characterization methodology in sintered functional spinels with PALS technique,” Phys. Status Solidi C 4, 1317–1320 (2007).
[Crossref]

O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, and J. Filipecki, “PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics,” J. Eur. Ceram. Soc. 25, 2981–2984 (2005).
[Crossref]

Furuse, H.

Galecki, L.

Gaume, R.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93, 191902 (2008).
[Crossref]

Giebel, D.

D. Giebel and J. Kansy, “LT10 program for solving basic problems connected with defect detection,” Phys. Procedia 35, 122–127 (2012).
[Crossref]

Grimes, R.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93, 191902 (2008).
[Crossref]

Gui, Z.

Y. He, X. Ma, Z. Gui, and L. Li, “Point defect studies on perovskite structured piezoelectric ceramics using positron annihilation,” Acta Phys. Sinica 47, 146–153 (1998).

Guo, W.

Hadzaman, I.

H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A. I. Popov, “Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics,” Low. Temp. Phys. 42, 601–605 (2016).
[Crossref]

O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, and J. Filipecki, “PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics,” J. Eur. Ceram. Soc. 25, 2981–2984 (2005).
[Crossref]

Haneda, H.

H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
[Crossref]

Hasegawa, K.

He, Y.

Y. He, X. Ma, Z. Gui, and L. Li, “Point defect studies on perovskite structured piezoelectric ceramics using positron annihilation,” Acta Phys. Sinica 47, 146–153 (1998).

Hill, E. S.

Hotra, O.

H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A. I. Popov, “Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics,” Low. Temp. Phys. 42, 601–605 (2016).
[Crossref]

Husband, P.

P. Husband, I. Bartošová, V. Slugeň, and F. Selim, “Positron annihilation in transparent ceramics,” J. Phys. Conf. Ser. 674, 012013 (2016).
[Crossref]

Ichikawa, T.

Ikesue, A.

K. Hasegawa, T. Ichikawa, S. Mizuno, Y. Takeda, H. Ito, A. Ikesue, T. Motohiro, and M. Yamaga, “Energy transfer efficiency from Cr3+ to Nd3+ in solar-pumped laser using transparent Nd/Cr:Y3Al5O12 ceramics,” Opt. Express 23, A519–A524 (2015).
[Crossref]

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2, 721–727 (2008).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[Crossref]

A. Ikesue and K. Yoshida, “Influence of pore volume on laser performance of Nd:YAG ceramics,” J. Mater. Sci. 34, 1189–1195 (1999).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

Ikuhara, Y.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Ingram, A.

H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A. I. Popov, “Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics,” Low. Temp. Phys. 42, 601–605 (2016).
[Crossref]

V. Balitska, J. Filipecki, A. Ingram, and O. Shpotyuk, “Defect characterization methodology in sintered functional spinels with PALS technique,” Phys. Status Solidi C 4, 1317–1320 (2007).
[Crossref]

O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, and J. Filipecki, “PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics,” J. Eur. Ceram. Soc. 25, 2981–2984 (2005).
[Crossref]

Irifune, T.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Ishikawa, R.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Ito, H.

Ito, K.

K. Ito, H. Nakanishi, and Y. Ujihira, “Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1  nm in radius,” J. Phys. Chem. B 103, 4555–4558 (1999).
[Crossref]

Ivanov, M. G.

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

Ivanov, V. V.

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

Jacobsohn, L. G.

L. G. Jacobsohn, K. Serivalsatit, C. A. Quarles, and J. Ballato, “Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy,” J. Mater. Sci. 50, 3183–3188 (2015).
[Crossref]

Ji, J.

J. Ji, L. Boatner, and F. Selim, “Donor characterization in ZnO by thermally stimulated luminescence,” Appl. Phys. Lett. 105, 041102 (2014).
[Crossref]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

Kansy, J.

D. Giebel and J. Kansy, “LT10 program for solving basic problems connected with defect detection,” Phys. Procedia 35, 122–127 (2012).
[Crossref]

Katz, A.

Kawanaka, J.

Kaygorodov, A. S.

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

Khamehchi, A.

Khrustov, V. R.

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

Kim, B. N.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

Klym, H.

H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A. I. Popov, “Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics,” Low. Temp. Phys. 42, 601–605 (2016).
[Crossref]

H. Klym, “Study of nanoporous in humidity-sensitive MgAl2O4 ceramics with positron annihilation lifetime spectroscopy,” Semicond. Phys. Quantum Electron. Optoelectron. 14, 109–113 (2011).
[Crossref]

O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, and J. Filipecki, “PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics,” J. Eur. Ceram. Soc. 25, 2981–2984 (2005).
[Crossref]

Koike, Y.

Konishi, D.

Kotov, Y. A.

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

Krasnikov, A.

V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, “Luminescence of undoped LuAG and YAG crystals,” Phys. Status Solidi C 2, 97–100 (2005).
[Crossref]

Kuklja, M. M.

M. M. Kuklja and R. Pandey, “Atomistic modeling of native point defects in yttrium aluminum garnet crystals,” J. Am. Ceram. Soc. 82, 2881–2886 (1999).
[Crossref]

Kulik, E.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Kupp, E. R.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

Kurimura, S.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[Crossref]

Kurnosov, A.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Lapatovich, W. P.

L. Brock, K. Mishra, M. Raukas, W. P. Lapatovich, and G. C. Wei, “Color centers in magnesium doped polycrystalline alumina,” MRS Online Proc. Library Archive 667, G7 (2001).
[Crossref]

Lee, S. H.

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

Lemonnier, S.

Leriche, A.

Levy, M.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93, 191902 (2008).
[Crossref]

Li, J.

Li, L.

Y. He, X. Ma, Z. Gui, and L. Li, “Point defect studies on perovskite structured piezoelectric ceramics using positron annihilation,” Acta Phys. Sinica 47, 146–153 (1998).

Li, X.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

Lingertat, H.

E. Zych, C. Brecher, and H. Lingertat, “Depletion of high-energy carriers in YAG optical ceramic materials,” Spectrochim. Acta A 54, 1771–1777 (1998).
[Crossref]

Liu, K.

Long, J.

Lynn, K. G.

P. J. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys. 60, 701–779 (1988).
[Crossref]

Ma, C.

Ma, R.

Ma, X.

Y. He, X. Ma, Z. Gui, and L. Li, “Point defect studies on perovskite structured piezoelectric ceramics using positron annihilation,” Acta Phys. Sinica 47, 146–153 (1998).

Mackay, D.

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D 45, 218–224 (2011).
[Crossref]

Mackay, D. T.

D. T. Mackay, C. R. Varney, J. Buscher, and F. A. Selim, “Study of exciton dynamics in garnets by low temperature thermo-luminescence,” J. Appl. Phys. 112, 023522 (2012).
[Crossref]

C. R. Varney, D. T. Mackay, A. Pratt, S. M. Reda, and F. A. Selim, “Energy levels of exciton traps in yttrium aluminum garnet single crystals,” J. Appl. Phys. 111, 063505 (2012).
[Crossref]

Maitre, A.

Marquardt, H.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Martinez, M. A.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

Masuno, A.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Matsumoto, K.

H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
[Crossref]

McClellan, K.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93, 191902 (2008).
[Crossref]

McCluskey, M. D.

F. A. Selim, C. R. Varney, M. C. Tarun, M. C. Rowe, G. S. Collins, and M. D. McCluskey, “Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets,” Phys. Rev. B 88, 174102 (2013).
[Crossref]

Medvedev, A. I.

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

Messing, G. L.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

Migachev, S. A.

I. S. Akhmadullin, S. A. Migachev, and S. P. Mironov, “Thermo- and photoinduced defects in Y3Al5O12 crystals,” Nucl. Instrum. Meth. B 65, 270–274 (1992).
[Crossref]

Mironov, S. P.

I. S. Akhmadullin, S. A. Migachev, and S. P. Mironov, “Thermo- and photoinduced defects in Y3Al5O12 crystals,” Nucl. Instrum. Meth. B 65, 270–274 (1992).
[Crossref]

Mishra, K.

L. Brock, K. Mishra, M. Raukas, W. P. Lapatovich, and G. C. Wei, “Color centers in magnesium doped polycrystalline alumina,” MRS Online Proc. Library Archive 667, G7 (2001).
[Crossref]

Mizuno, S.

Mori, K.

K. Mori, “Transient colour centres caused by UV light irradiation in yttrium aluminum garnet crystals,” Phys. Status Solidi A 42, 375–384 (1977).
[Crossref]

Motohiro, T.

Mueller, K. T.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

Murakami, M.

Murzakaev, A. M.

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

Nakagawa, T.

H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
[Crossref]

Nakanishi, H.

K. Ito, H. Nakanishi, and Y. Ujihira, “Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1  nm in radius,” J. Phys. Chem. B 103, 4555–4558 (1999).
[Crossref]

Nejezchleb, K.

V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, “Luminescence of undoped LuAG and YAG crystals,” Phys. Status Solidi C 2, 97–100 (2005).
[Crossref]

Nikl, M.

V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, “Luminescence of undoped LuAG and YAG crystals,” Phys. Status Solidi C 2, 97–100 (2005).
[Crossref]

Nishiyama, N.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Ohashi, N.

H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
[Crossref]

Ohfuji, H.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Orlov, A. N.

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

Osipov, V. V.

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

Paladino, A. E.

M. Bass and A. E. Paladino, “Color centers in yttrium gallium garnet and yttrium aluminum garnet,” J. Appl. Phys. 38, 2706–2707 (1967).
[Crossref]

Pandey, R.

M. M. Kuklja and R. Pandey, “Atomistic modeling of native point defects in yttrium aluminum garnet crystals,” J. Am. Ceram. Soc. 82, 2881–2886 (1999).
[Crossref]

Patel, A.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93, 191902 (2008).
[Crossref]

Popov, A. I.

H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A. I. Popov, “Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics,” Low. Temp. Phys. 42, 601–605 (2016).
[Crossref]

Pratt, A.

C. R. Varney, D. T. Mackay, A. Pratt, S. M. Reda, and F. A. Selim, “Energy levels of exciton traps in yttrium aluminum garnet single crystals,” J. Appl. Phys. 111, 063505 (2012).
[Crossref]

Qiao, X.

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

Quarles, C. A.

L. G. Jacobsohn, K. Serivalsatit, C. A. Quarles, and J. Ballato, “Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy,” J. Mater. Sci. 50, 3183–3188 (2015).
[Crossref]

Quarles, G. J.

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

Rabinovitch, Y.

Raukas, M.

L. Brock, K. Mishra, M. Raukas, W. P. Lapatovich, and G. C. Wei, “Color centers in magnesium doped polycrystalline alumina,” MRS Online Proc. Library Archive 667, G7 (2001).
[Crossref]

Reda, S.

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D 45, 218–224 (2011).
[Crossref]

Reda, S. M.

C. R. Varney, D. T. Mackay, A. Pratt, S. M. Reda, and F. A. Selim, “Energy levels of exciton traps in yttrium aluminum garnet single crystals,” J. Appl. Phys. 111, 063505 (2012).
[Crossref]

Reynaud, F.

Rhodes, W. H.

C. Brecher, G. C. Wei, and W. H. Rhodes, “Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria,” J. Am. Ceram. Soc. 73, 1473–1488 (1990).
[Crossref]

Rotman, S.

S. Rotman, H. Tuller, and C. Warde, “Defect-property correlations in garnet crystals. VI. The electrical conductivity, defect structure, and optical properties of luminescent calcium and cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 71, 1209–1214 (1992).
[Crossref]

S. Rotman, R. Tandon, and H. Tuller, “Defect-property correlations in garnet crystals: the electrical conductivity and defect structure of luminescent cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 57, 1951–1955 (1985).
[Crossref]

Rowe, M. C.

F. A. Selim, C. R. Varney, M. C. Tarun, M. C. Rowe, G. S. Collins, and M. D. McCluskey, “Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets,” Phys. Rev. B 88, 174102 (2013).
[Crossref]

Saito, N.

H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
[Crossref]

Sakaguchi, I.

H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
[Crossref]

Sato, Y.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[Crossref]

Savikhina, T.

V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, “Luminescence of undoped LuAG and YAG crystals,” Phys. Status Solidi C 2, 97–100 (2005).
[Crossref]

Schultz, P. J.

P. J. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys. 60, 701–779 (1988).
[Crossref]

Selim, F.

P. Husband, I. Bartošová, V. Slugeň, and F. Selim, “Positron annihilation in transparent ceramics,” J. Phys. Conf. Ser. 674, 012013 (2016).
[Crossref]

F. Selim, A. Khamehchi, D. Winarski, and S. Agarwal, “Synthesis and characterization of Ce:YAG nano-phosphors and ceramics,” Opt. Mater. Express 6, 3704–3715 (2016).
[Crossref]

J. Ji, L. Boatner, and F. Selim, “Donor characterization in ZnO by thermally stimulated luminescence,” Appl. Phys. Lett. 105, 041102 (2014).
[Crossref]

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D 45, 218–224 (2011).
[Crossref]

Selim, F. A.

L. Zhang, T. Zhou, F. A. Selim, and H. Chen, “Single CaO accelerated densification and microstructure control of highly transparent YAG ceramic,” J. Am. Ceram. Soc. 101, 703–712 (2018).
[Crossref]

F. A. Selim, C. R. Varney, M. C. Tarun, M. C. Rowe, G. S. Collins, and M. D. McCluskey, “Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets,” Phys. Rev. B 88, 174102 (2013).
[Crossref]

C. R. Varney, D. T. Mackay, A. Pratt, S. M. Reda, and F. A. Selim, “Energy levels of exciton traps in yttrium aluminum garnet single crystals,” J. Appl. Phys. 111, 063505 (2012).
[Crossref]

D. T. Mackay, C. R. Varney, J. Buscher, and F. A. Selim, “Study of exciton dynamics in garnets by low temperature thermo-luminescence,” J. Appl. Phys. 112, 023522 (2012).
[Crossref]

Serivalsatit, K.

L. G. Jacobsohn, K. Serivalsatit, C. A. Quarles, and J. Ballato, “Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy,” J. Mater. Sci. 50, 3183–3188 (2015).
[Crossref]

Shen, D.

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

Shimizu, S.

Shoji, I.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[Crossref]

Shpotyuk, O.

H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A. I. Popov, “Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics,” Low. Temp. Phys. 42, 601–605 (2016).
[Crossref]

V. Balitska, J. Filipecki, A. Ingram, and O. Shpotyuk, “Defect characterization methodology in sintered functional spinels with PALS technique,” Phys. Status Solidi C 4, 1317–1320 (2007).
[Crossref]

O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, and J. Filipecki, “PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics,” J. Eur. Ceram. Soc. 25, 2981–2984 (2005).
[Crossref]

Simonaitis-Castillo, V. K.

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

Slugen, V.

P. Husband, I. Bartošová, V. Slugeň, and F. Selim, “Positron annihilation in transparent ceramics,” J. Phys. Conf. Ser. 674, 012013 (2016).
[Crossref]

Solntsev, V.

H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A. I. Popov, “Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics,” Low. Temp. Phys. 42, 601–605 (2016).
[Crossref]

Stanek, C.

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93, 191902 (2008).
[Crossref]

Stevenson, A. J.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

A. J. Stevenson, “The effects of sintering aids on defects, densification, and single crystal conversion of transparent neodymium:YAG ceramics,” Ph.D. thesis (The Pennsylvania State University, 2010).

Suchy, D. L.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

Sun, X. D.

L. Wen, X. D. Sun, Z. Xiu, S. W. Chen, and C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc. 24, 2681–2688 (2004).
[Crossref]

Taira, T.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[Crossref]

Takeda, Y.

Tandon, R.

S. Rotman, R. Tandon, and H. Tuller, “Defect-property correlations in garnet crystals: the electrical conductivity and defect structure of luminescent cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 57, 1951–1955 (1985).
[Crossref]

Tang, D.

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

Tang, F.

Taniguchi, T.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Tarun, M. C.

F. A. Selim, C. R. Varney, M. C. Tarun, M. C. Rowe, G. S. Collins, and M. D. McCluskey, “Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets,” Phys. Rev. B 88, 174102 (2013).
[Crossref]

Tokita, S.

Tsai, C. T.

L. Wen, X. D. Sun, Z. Xiu, S. W. Chen, and C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc. 24, 2681–2688 (2004).
[Crossref]

Tuller, H.

S. Rotman, H. Tuller, and C. Warde, “Defect-property correlations in garnet crystals. VI. The electrical conductivity, defect structure, and optical properties of luminescent calcium and cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 71, 1209–1214 (1992).
[Crossref]

S. Rotman, R. Tandon, and H. Tuller, “Defect-property correlations in garnet crystals: the electrical conductivity and defect structure of luminescent cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 57, 1951–1955 (1985).
[Crossref]

Ueda, K.-I.

H. Yagi, T. Yanagitani, and K.-I. Ueda, “Nd3+:Y3Al5O12 laser ceramics: flashlamp pumped laser operation with a UV cut filter,” J. Alloy. Compd. 421, 195–199 (2006).
[Crossref]

Uehara, H.

Ujihira, Y.

K. Ito, H. Nakanishi, and Y. Ujihira, “Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1  nm in radius,” J. Phys. Chem. B 103, 4555–4558 (1999).
[Crossref]

Vakiv, M.

O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, and J. Filipecki, “PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics,” J. Eur. Ceram. Soc. 25, 2981–2984 (2005).
[Crossref]

Varney, C.

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D 45, 218–224 (2011).
[Crossref]

Varney, C. R.

F. A. Selim, C. R. Varney, M. C. Tarun, M. C. Rowe, G. S. Collins, and M. D. McCluskey, “Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets,” Phys. Rev. B 88, 174102 (2013).
[Crossref]

C. R. Varney, D. T. Mackay, A. Pratt, S. M. Reda, and F. A. Selim, “Energy levels of exciton traps in yttrium aluminum garnet single crystals,” J. Appl. Phys. 111, 063505 (2012).
[Crossref]

D. T. Mackay, C. R. Varney, J. Buscher, and F. A. Selim, “Study of exciton dynamics in garnets by low temperature thermo-luminescence,” J. Appl. Phys. 112, 023522 (2012).
[Crossref]

Villars, B.

Wakai, F.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Wang, Z.

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

Warde, C.

S. Rotman, H. Tuller, and C. Warde, “Defect-property correlations in garnet crystals. VI. The electrical conductivity, defect structure, and optical properties of luminescent calcium and cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 71, 1209–1214 (1992).
[Crossref]

Wei, G. C.

L. Brock, K. Mishra, M. Raukas, W. P. Lapatovich, and G. C. Wei, “Color centers in magnesium doped polycrystalline alumina,” MRS Online Proc. Library Archive 667, G7 (2001).
[Crossref]

C. Brecher, G. C. Wei, and W. H. Rhodes, “Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria,” J. Am. Ceram. Soc. 73, 1473–1488 (1990).
[Crossref]

Wen, L.

L. Wen, X. D. Sun, Z. Xiu, S. W. Chen, and C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc. 24, 2681–2688 (2004).
[Crossref]

Wen, Z.

Winarski, D.

Xiu, Z.

L. Wen, X. D. Sun, Z. Xiu, S. W. Chen, and C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc. 24, 2681–2688 (2004).
[Crossref]

Yagi, H.

H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
[Crossref]

H. Yagi, T. Yanagitani, and K.-I. Ueda, “Nd3+:Y3Al5O12 laser ceramics: flashlamp pumped laser operation with a UV cut filter,” J. Alloy. Compd. 421, 195–199 (2006).
[Crossref]

Yamaga, M.

Yanagitani, T.

H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
[Crossref]

H. Yagi, T. Yanagitani, and K.-I. Ueda, “Nd3+:Y3Al5O12 laser ceramics: flashlamp pumped laser operation with a UV cut filter,” J. Alloy. Compd. 421, 195–199 (2006).
[Crossref]

Yang, H.

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

Yasuhara, R.

Yoshida, H.

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Yoshida, K.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[Crossref]

A. Ikesue and K. Yoshida, “Influence of pore volume on laser performance of Nd:YAG ceramics,” J. Mater. Sci. 34, 1189–1195 (1999).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

Yuan, X.

Zazubovich, S.

V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, “Luminescence of undoped LuAG and YAG crystals,” Phys. Status Solidi C 2, 97–100 (2005).
[Crossref]

Zhang, J.

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

Zhang, L.

L. Zhang, T. Zhou, F. A. Selim, and H. Chen, “Single CaO accelerated densification and microstructure control of highly transparent YAG ceramic,” J. Am. Ceram. Soc. 101, 703–712 (2018).
[Crossref]

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

Zhang, Q.

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

Zhou, T.

L. Zhang, T. Zhou, F. A. Selim, and H. Chen, “Single CaO accelerated densification and microstructure control of highly transparent YAG ceramic,” J. Am. Ceram. Soc. 101, 703–712 (2018).
[Crossref]

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

Zhu, J.

Zych, E.

E. Zych, C. Brecher, and H. Lingertat, “Depletion of high-energy carriers in YAG optical ceramic materials,” Spectrochim. Acta A 54, 1771–1777 (1998).
[Crossref]

Acta Phys. Sinica (1)

Y. He, X. Ma, Z. Gui, and L. Li, “Point defect studies on perovskite structured piezoelectric ceramics using positron annihilation,” Acta Phys. Sinica 47, 146–153 (1998).

Appl. Phys. Lett. (3)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[Crossref]

A. Patel, M. Levy, R. Grimes, R. Gaume, R. Feigelson, K. McClellan, and C. Stanek, “Mechanisms of nonstoichiometry in Y3Al5O12,” Appl. Phys. Lett. 93, 191902 (2008).
[Crossref]

J. Ji, L. Boatner, and F. Selim, “Donor characterization in ZnO by thermally stimulated luminescence,” Appl. Phys. Lett. 105, 041102 (2014).
[Crossref]

J. Alloy. Compd. (1)

H. Yagi, T. Yanagitani, and K.-I. Ueda, “Nd3+:Y3Al5O12 laser ceramics: flashlamp pumped laser operation with a UV cut filter,” J. Alloy. Compd. 421, 195–199 (2006).
[Crossref]

J. Am. Ceram. Soc. (6)

M. M. Kuklja and R. Pandey, “Atomistic modeling of native point defects in yttrium aluminum garnet crystals,” J. Am. Ceram. Soc. 82, 2881–2886 (1999).
[Crossref]

S. H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis‐Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92, 1456–1463 (2009).
[Crossref]

L. Zhang, T. Zhou, F. A. Selim, and H. Chen, “Single CaO accelerated densification and microstructure control of highly transparent YAG ceramic,” J. Am. Ceram. Soc. 101, 703–712 (2018).
[Crossref]

C. Brecher, G. C. Wei, and W. H. Rhodes, “Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria,” J. Am. Ceram. Soc. 73, 1473–1488 (1990).
[Crossref]

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc. 94, 1380–1387 (2011).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[Crossref]

J. Appl. Phys. (5)

C. R. Varney, D. T. Mackay, A. Pratt, S. M. Reda, and F. A. Selim, “Energy levels of exciton traps in yttrium aluminum garnet single crystals,” J. Appl. Phys. 111, 063505 (2012).
[Crossref]

D. T. Mackay, C. R. Varney, J. Buscher, and F. A. Selim, “Study of exciton dynamics in garnets by low temperature thermo-luminescence,” J. Appl. Phys. 112, 023522 (2012).
[Crossref]

S. Rotman, R. Tandon, and H. Tuller, “Defect-property correlations in garnet crystals: the electrical conductivity and defect structure of luminescent cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 57, 1951–1955 (1985).
[Crossref]

S. Rotman, H. Tuller, and C. Warde, “Defect-property correlations in garnet crystals. VI. The electrical conductivity, defect structure, and optical properties of luminescent calcium and cerium-doped yttrium aluminum garnet,” J. Appl. Phys. 71, 1209–1214 (1992).
[Crossref]

M. Bass and A. E. Paladino, “Color centers in yttrium gallium garnet and yttrium aluminum garnet,” J. Appl. Phys. 38, 2706–2707 (1967).
[Crossref]

J. Eur. Ceram. Soc. (4)

L. Wen, X. D. Sun, Z. Xiu, S. W. Chen, and C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc. 24, 2681–2688 (2004).
[Crossref]

L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, “Systematic optimization of spray drying for YAG transparent ceramics,” J. Eur. Ceram. Soc. 35, 2391–2401 (2015).
[Crossref]

O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, and J. Filipecki, “PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics,” J. Eur. Ceram. Soc. 25, 2981–2984 (2005).
[Crossref]

A. S. Kaygorodov, V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, “Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders,” J. Eur. Ceram. Soc. 27, 1165–1169 (2007).
[Crossref]

J. Inorg. Mater. (1)

X. Feng, “Anti-site defects in YAG and LuAG crystals,” J. Inorg. Mater. 25, 785–794 (2010).
[Crossref]

J. Mater. Sci. (2)

L. G. Jacobsohn, K. Serivalsatit, C. A. Quarles, and J. Ballato, “Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy,” J. Mater. Sci. 50, 3183–3188 (2015).
[Crossref]

A. Ikesue and K. Yoshida, “Influence of pore volume on laser performance of Nd:YAG ceramics,” J. Mater. Sci. 34, 1189–1195 (1999).
[Crossref]

J. Phys. Chem. B (1)

K. Ito, H. Nakanishi, and Y. Ujihira, “Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1  nm in radius,” J. Phys. Chem. B 103, 4555–4558 (1999).
[Crossref]

J. Phys. Conf. Ser. (1)

P. Husband, I. Bartošová, V. Slugeň, and F. Selim, “Positron annihilation in transparent ceramics,” J. Phys. Conf. Ser. 674, 012013 (2016).
[Crossref]

J. Phys. D (1)

C. Varney, D. Mackay, S. Reda, and F. Selim, “On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals,” J. Phys. D 45, 218–224 (2011).
[Crossref]

Low. Temp. Phys. (1)

H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A. I. Popov, “Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics,” Low. Temp. Phys. 42, 601–605 (2016).
[Crossref]

Mater. Sci. Technol. (1)

H. Haneda, I. Sakaguchi, N. Ohashi, N. Saito, K. Matsumoto, T. Nakagawa, T. Yanagitani, and H. Yagi, “Evaluation of oxide ion diffusivity in YAG ceramics,” Mater. Sci. Technol. 25, 1341–1345 (2009).
[Crossref]

MRS Online Proc. Library Archive (1)

L. Brock, K. Mishra, M. Raukas, W. P. Lapatovich, and G. C. Wei, “Color centers in magnesium doped polycrystalline alumina,” MRS Online Proc. Library Archive 667, G7 (2001).
[Crossref]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2, 721–727 (2008).
[Crossref]

Nucl. Instrum. Meth. B (1)

I. S. Akhmadullin, S. A. Migachev, and S. P. Mironov, “Thermo- and photoinduced defects in Y3Al5O12 crystals,” Nucl. Instrum. Meth. B 65, 270–274 (1992).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Procedia (1)

D. Giebel and J. Kansy, “LT10 program for solving basic problems connected with defect detection,” Phys. Procedia 35, 122–127 (2012).
[Crossref]

Phys. Rev. B (1)

F. A. Selim, C. R. Varney, M. C. Tarun, M. C. Rowe, G. S. Collins, and M. D. McCluskey, “Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets,” Phys. Rev. B 88, 174102 (2013).
[Crossref]

Phys. Status Solidi A (1)

K. Mori, “Transient colour centres caused by UV light irradiation in yttrium aluminum garnet crystals,” Phys. Status Solidi A 42, 375–384 (1977).
[Crossref]

Phys. Status Solidi C (2)

V. Babin, K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, “Luminescence of undoped LuAG and YAG crystals,” Phys. Status Solidi C 2, 97–100 (2005).
[Crossref]

V. Balitska, J. Filipecki, A. Ingram, and O. Shpotyuk, “Defect characterization methodology in sintered functional spinels with PALS technique,” Phys. Status Solidi C 4, 1317–1320 (2007).
[Crossref]

Rev. Mod. Phys. (1)

P. J. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys. 60, 701–779 (1988).
[Crossref]

Sci. Rep. (1)

N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, “Transparent polycrystalline cubic silicon nitride,” Sci. Rep. 7, 44755 (2017).
[Crossref]

Semicond. Phys. Quantum Electron. Optoelectron. (1)

H. Klym, “Study of nanoporous in humidity-sensitive MgAl2O4 ceramics with positron annihilation lifetime spectroscopy,” Semicond. Phys. Quantum Electron. Optoelectron. 14, 109–113 (2011).
[Crossref]

Spectrochim. Acta A (1)

E. Zych, C. Brecher, and H. Lingertat, “Depletion of high-energy carriers in YAG optical ceramic materials,” Spectrochim. Acta A 54, 1771–1777 (1998).
[Crossref]

Other (1)

A. J. Stevenson, “The effects of sintering aids on defects, densification, and single crystal conversion of transparent neodymium:YAG ceramics,” Ph.D. thesis (The Pennsylvania State University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Optical absorption of (a) as-fabricated and (b) high-temperature (1350°C for 10 h) annealed YAG transparent ceramics after UV irradiation (inset: variation with the irradiation time).
Fig. 2.
Fig. 2. Gaussian fitting of optical absorption of colored YAG ceramics using the least-squares method.
Fig. 3.
Fig. 3. Optical transmittance of UV-irradiated YAG ceramics after annealing at various temperatures.
Fig. 4.
Fig. 4. Contour plots of TL in (a) as-sintered and (b) annealed YAG transparent ceramics from 190 ° C to 400°C with the heating rate of 60°C/min. (c) Comparison of TL glow curves of as-sintered and annealed YAG transparent ceramics. (d) TL emission spectra for as-sintered YAG ceramics (at 20 ° C and 120°C) and annealed YAG transparent ceramics (at 25 ° C ). Plots of ln I versus 1 / T for the TL peak ( 20 ° C / 25 ° C ) for (e) as-sintered and (f) annealed YAG transparent ceramics with a rate of 60°C/min.
Fig. 5.
Fig. 5. PALS results for as-sintered YAG ceramics at 1840°C for 8 h together with deconvolution analysis of lifetime data. (Top) Semi-log plot lifetime distribution up to 8 ns; (bottom) residual difference between the experimental and best-fit results.
Fig. 6.
Fig. 6. (a) Thermally etched surface and (b) fracture surface of YAG transparent ceramics. (c) HR-TEM image of the grain boundary with the corresponding SAED pattern as an inset of the YAG transparent ceramics.
Fig. 7.
Fig. 7. Lifetime results of τ 2 and I 2 in YAG transparent ceramics: (a) solarization effect, (b) low-temperature annealing treatment of UV-irradiated ceramics.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

SiO 2 + 5 6 Al Al x + 1 2 Y Y x Si Al . + 1 3 V Y + 1 6 Y 3 Al 5 O 12 .
Fe 3 + + O O Reduction Oxidation Fe 2 + + 1 2 V O ¨ + 1 2 O 2 ( g ) .
Mg 2 + YAG Mg Al + 1 2 V O ¨ .
O 2 h v O 2 + 2 e ,
Fe 2 + h v Fe 3 + + e .
I s n 0 q exp ( E k B T ) , I ( T ) = C exp ( E k B T ) ,

Metrics