Abstract

Visible light communication based on light-emitting diodes (LEDs) has become a promising candidate by providing high data rates, low latency, and secure communication for underwater environments. In this paper, a self-designed common-anode GaN-based five-primary-color LED (RGBYC LED) on a Si substrate is proposed and fabricated. The design of a common anode is used to mitigate the saturation effect for a low-frequency component. Additionally, compared with commercially available LEDs that suffer from nonlinearity distortion, applying the designed LED can provide much better and broader linearity according to the measurement results. Therefore, the modulation depth and system performance can be further improved to implement a high-speed underwater visible light communication (UVLC) system. There is no nonlinearity compensation algorithm applied due to the good linearity of the proposed LED; thus, the offline digital signal processing is simplified. We experimentally demonstrate 14.81 Gbit/s 64 quadrature amplitude modulation (QAM)-discrete multitone (DMT) and 15.17 Gbit/s bit-loading-DMT transmissions through a 1.2-m-long underwater channel based on the proposed RGBYC LED with an intrasymbol frequency-domain averaging channel estimation and zero-forcing equalization. As far as we know, this is the highest data rate for an LED-based UVLC system.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Large-coverage underwater visible light communication system based on blue LED employing equal gain combining with integrated PIN array reception

Jiehui Li, Fumin Wang, Mingming Zhao, Fengyi Jiang, and Nan Chi
Appl. Opt. 58(2) 383-388 (2019)

3.4 Gbit/s visible optical wireless transmission based on RGB LED

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella
Opt. Express 20(26) B501-B506 (2012)

20.231  Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visible-light communication system

Liang-Yu Wei, Chin-Wei Hsu, Chi-Wai Chow, and Chien-Hung Yeh
Photon. Res. 6(5) 422-426 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3  Gbit/s underwater wireless optical communications using directly modulated 520  nm laser diode,” Opt. Express 23, 20743–20748 (2015).
    [Crossref]
  2. G. Cossu, R. Corsini, A. M. Khalid, S. Balestrino, A. Coppelli, A. Caiti, and E. Ciaramella, “Experimental demonstration of high speed underwater visible light communications,” in 2nd International Workshop on Optical Wireless Communications (IWOW) (IEEE, 2013).
  3. C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J. 8, 7906311 (2017).
    [Crossref]
  4. D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
    [Crossref]
  5. N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
    [Crossref]
  6. N. Chi, Y. Zhou, S. Liang, F. Wang, J. Li, and Y. Wang, “Enabling technologies for high-speed visible light communication employing CAP modulation,” J. Lightwave Technol. 36, 510–518 (2018).
    [Crossref]
  7. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4  Gbps,” Sci. Rep. 7, 40480 (2017).
    [Crossref]
  8. H. Y. Wang, Y. F. Huang, W. C. Wang, C. T. Tsai, C. H. Cheng, Y. C. Chi, and G. R. Lin, “Seawater communication with blue laser carried 16-QAM OFDM at 3.7  GBaud,” in IEEE Optical Fiber Communication Conference (2018), paper Tu2I.1.
  9. S. J. Pearton, GaN and Related Materials II (CRC Press, 2000), Vol. 7.
  10. S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: growth, characterization, and properties,” J. Appl. Phys. 87, 965–1006 (2000).
    [Crossref]
  11. C. Xiong, F. Jiang, W. Fang, L. Wang, H. Liu, and C. Mo, “Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate,” Sci. China E 49, 313–321 (2006).
    [Crossref]
  12. J. Huang, Q. Zheng, and B. Liu, “Laser lift-off technique and the re-utilization of GaN-based LED films grown on sapphire substrate,” Optoelectron. Lett. 4, 354–357 (2008).
    [Crossref]
  13. X. Zhu, F. Wang, M. Shi, N. Chi, J. Liu, and F. Jiang, “10.72  Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization,” in IEEE Optical Fiber Communication Conference (2018), paper M3K.3.
  14. Y. Zhao, C. Wang, F. Wang, Y. Liu, X. Zhu, J. Liu, F. Jiang, and N. Chi, “1.725  Gb/s underwater visible light communication system based on a silicon substrate green LED and equal gain combination receiver,” in International Conference and Exhibition on Visible Light Communications, ICEVLC (2018).
  15. N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Express 26, 26700–26712 (2018).
    [Crossref]
  16. Y. Zhao, M. Shi, and N. Chi, “Application of multilayer perceptron in underwater visible light communication system,” in 8th International Multidisciplinary Conference on Optofluidics, IMCO (2018).
  17. P. Zou, Y. Liu, F. Wang, and N. Chi, “Mitigating nonlinearity characteristics of gray-coding square 8QAM in underwater VLC system,” in IEEE Asia Communications and Photonics Conference ACP (2018).
  18. N. Chi and M. Shi, “Advanced modulation formats for underwater visible light communications (invited),” Chin. Opt. Lett. 16, 120603 (2018).
    [Crossref]
  19. F. Wang, Y. Liu, F. Jiang, and N. Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).
    [Crossref]
  20. M. Shi, M. Zhang, F. Wang, M. Zhao, and N. Chi, “Equiprobable pre-coding PAM7 modulation for nonlinearity mitigation in underwater 2 × 1 MISO visible light communications,” J. Lightwave Technol. 36, 5188–5195 (2018).
    [Crossref]
  21. J. Li, F. Wang, M. Zhao, F. Jiang, and N. Chi, “Large-coverage underwater visible light communication system based on blue-LED employing equal gain combining with integrated PIN array reception,” Appl. Opt. 58, 383–388 (2019).
    [Crossref]
  22. P. Zou, Y. Liu, F. Wang, F. Hu, and N. Chi, “Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system,” Opt. Commun. 438, 132–140 (2018).
    [Crossref]
  23. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10  Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5, A35–A43 (2017).
    [Crossref]
  24. A. Krost and A. Dadgar, “GaN-based optoelectronics on silicon substrates,” Mater. Sci. Eng. B 93, 77–84 (2002).
    [Crossref]
  25. F. Jiang, J. Liu, L. Wang, C. Xiong, and W. Fang, “High optical efficiency GaN based blue LED on silicon substrate,” Sci. Sin. Phys. Mech. Astron. 45, 067302 (2015).
    [Crossref]
  26. Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Effect of V-shaped Pit area ratio on quantum efficiency of blue InGaN/GaN multiple-quantum well light-emitting diodes,” Opt. Quantum Electron. 48, 3 (2016).
    [Crossref]
  27. Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes,” J. Appl. Phys. 16, 183107 (2014).
    [Crossref]
  28. J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett. 99, 111112 (2011).
    [Crossref]
  29. C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth 285, 312–317 (2005).
    [Crossref]
  30. F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, and J. Liu, “Efficient InGaN-based yellow-light-emitting diodes,” Photon. Res. 7, 144–148 (2019).
    [Crossref]
  31. Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer,” IEEE Photon. J. 7, 7901907 (2015).
    [Crossref]
  32. Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
    [Crossref]
  33. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16, 21944–21957 (2008).
    [Crossref]
  34. J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in European Conference on Optical Communication (ECOC) (IEEE, 2017), pp. 1–3.
  35. A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33, 4338–4352 (2015).
    [Crossref]
  36. L. Schmalen, A. Alvarado, and R. Rios-Müller, “Performance prediction of nonbinary forward error correction in optical transmission experiments,” J. Lightwave Technol. 35, 1015–1027 (2017).
    [Crossref]
  37. R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in International Conference on ICECE (IEEE, 2006), pp. 408–411.
  38. X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750  Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in IEEE Optical Fiber Communication Conference (2015), paper Tu2G.1.

2019 (2)

2018 (6)

2017 (4)

2016 (2)

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Effect of V-shaped Pit area ratio on quantum efficiency of blue InGaN/GaN multiple-quantum well light-emitting diodes,” Opt. Quantum Electron. 48, 3 (2016).
[Crossref]

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

2015 (5)

F. Jiang, J. Liu, L. Wang, C. Xiong, and W. Fang, “High optical efficiency GaN based blue LED on silicon substrate,” Sci. Sin. Phys. Mech. Astron. 45, 067302 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3  Gbit/s underwater wireless optical communications using directly modulated 520  nm laser diode,” Opt. Express 23, 20743–20748 (2015).
[Crossref]

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33, 4338–4352 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer,” IEEE Photon. J. 7, 7901907 (2015).
[Crossref]

2014 (1)

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes,” J. Appl. Phys. 16, 183107 (2014).
[Crossref]

2011 (1)

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett. 99, 111112 (2011).
[Crossref]

2008 (3)

J. Huang, Q. Zheng, and B. Liu, “Laser lift-off technique and the re-utilization of GaN-based LED films grown on sapphire substrate,” Optoelectron. Lett. 4, 354–357 (2008).
[Crossref]

X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16, 21944–21957 (2008).
[Crossref]

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

2006 (1)

C. Xiong, F. Jiang, W. Fang, L. Wang, H. Liu, and C. Mo, “Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate,” Sci. China E 49, 313–321 (2006).
[Crossref]

2005 (1)

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth 285, 312–317 (2005).
[Crossref]

2002 (1)

A. Krost and A. Dadgar, “GaN-based optoelectronics on silicon substrates,” Mater. Sci. Eng. B 93, 77–84 (2002).
[Crossref]

2000 (1)

S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: growth, characterization, and properties,” J. Appl. Phys. 87, 965–1006 (2000).
[Crossref]

Agrell, E.

Alouini, M. S.

Alvarado, A.

Balestrino, S.

G. Cossu, R. Corsini, A. M. Khalid, S. Balestrino, A. Coppelli, A. Caiti, and E. Ciaramella, “Experimental demonstration of high speed underwater visible light communications,” in 2nd International Workshop on Optical Wireless Communications (IWOW) (IEEE, 2013).

Bamiedakis, N.

Bayvel, P.

Buchali, F.

Caiti, A.

G. Cossu, R. Corsini, A. M. Khalid, S. Balestrino, A. Coppelli, A. Caiti, and E. Ciaramella, “Experimental demonstration of high speed underwater visible light communications,” in 2nd International Workshop on Optical Wireless Communications (IWOW) (IEEE, 2013).

Cheng, C. H.

H. Y. Wang, Y. F. Huang, W. C. Wang, C. T. Tsai, C. H. Cheng, Y. C. Chi, and G. R. Lin, “Seawater communication with blue laser carried 16-QAM OFDM at 3.7  GBaud,” in IEEE Optical Fiber Communication Conference (2018), paper Tu2I.1.

Chi, N.

J. Li, F. Wang, M. Zhao, F. Jiang, and N. Chi, “Large-coverage underwater visible light communication system based on blue-LED employing equal gain combining with integrated PIN array reception,” Appl. Opt. 58, 383–388 (2019).
[Crossref]

M. Shi, M. Zhang, F. Wang, M. Zhao, and N. Chi, “Equiprobable pre-coding PAM7 modulation for nonlinearity mitigation in underwater 2 × 1 MISO visible light communications,” J. Lightwave Technol. 36, 5188–5195 (2018).
[Crossref]

N. Chi and M. Shi, “Advanced modulation formats for underwater visible light communications (invited),” Chin. Opt. Lett. 16, 120603 (2018).
[Crossref]

N. Chi, Y. Zhou, S. Liang, F. Wang, J. Li, and Y. Wang, “Enabling technologies for high-speed visible light communication employing CAP modulation,” J. Lightwave Technol. 36, 510–518 (2018).
[Crossref]

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Express 26, 26700–26712 (2018).
[Crossref]

P. Zou, Y. Liu, F. Wang, F. Hu, and N. Chi, “Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system,” Opt. Commun. 438, 132–140 (2018).
[Crossref]

F. Wang, Y. Liu, F. Jiang, and N. Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).
[Crossref]

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer,” IEEE Photon. J. 7, 7901907 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

Y. Zhao, M. Shi, and N. Chi, “Application of multilayer perceptron in underwater visible light communication system,” in 8th International Multidisciplinary Conference on Optofluidics, IMCO (2018).

Y. Zhao, C. Wang, F. Wang, Y. Liu, X. Zhu, J. Liu, F. Jiang, and N. Chi, “1.725  Gb/s underwater visible light communication system based on a silicon substrate green LED and equal gain combination receiver,” in International Conference and Exhibition on Visible Light Communications, ICEVLC (2018).

X. Zhu, F. Wang, M. Shi, N. Chi, J. Liu, and F. Jiang, “10.72  Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization,” in IEEE Optical Fiber Communication Conference (2018), paper M3K.3.

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750  Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in IEEE Optical Fiber Communication Conference (2015), paper Tu2G.1.

P. Zou, Y. Liu, F. Wang, and N. Chi, “Mitigating nonlinearity characteristics of gray-coding square 8QAM in underwater VLC system,” in IEEE Asia Communications and Photonics Conference ACP (2018).

Chi, Y. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4  Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref]

H. Y. Wang, Y. F. Huang, W. C. Wang, C. T. Tsai, C. H. Cheng, Y. C. Chi, and G. R. Lin, “Seawater communication with blue laser carried 16-QAM OFDM at 3.7  GBaud,” in IEEE Optical Fiber Communication Conference (2018), paper Tu2I.1.

Cho, J.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in European Conference on Optical Communication (ECOC) (IEEE, 2017), pp. 1–3.

Ciaramella, E.

G. Cossu, R. Corsini, A. M. Khalid, S. Balestrino, A. Coppelli, A. Caiti, and E. Ciaramella, “Experimental demonstration of high speed underwater visible light communications,” in 2nd International Workshop on Optical Wireless Communications (IWOW) (IEEE, 2013).

Coppelli, A.

G. Cossu, R. Corsini, A. M. Khalid, S. Balestrino, A. Coppelli, A. Caiti, and E. Ciaramella, “Experimental demonstration of high speed underwater visible light communications,” in 2nd International Workshop on Optical Wireless Communications (IWOW) (IEEE, 2013).

Corsini, R.

G. Cossu, R. Corsini, A. M. Khalid, S. Balestrino, A. Coppelli, A. Caiti, and E. Ciaramella, “Experimental demonstration of high speed underwater visible light communications,” in 2nd International Workshop on Optical Wireless Communications (IWOW) (IEEE, 2013).

Cossu, G.

G. Cossu, R. Corsini, A. M. Khalid, S. Balestrino, A. Coppelli, A. Caiti, and E. Ciaramella, “Experimental demonstration of high speed underwater visible light communications,” in 2nd International Workshop on Optical Wireless Communications (IWOW) (IEEE, 2013).

Dadgar, A.

A. Krost and A. Dadgar, “GaN-based optoelectronics on silicon substrates,” Mater. Sci. Eng. B 93, 77–84 (2002).
[Crossref]

Dawson, M. D.

Ding, J.

Fang, F.

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Effect of V-shaped Pit area ratio on quantum efficiency of blue InGaN/GaN multiple-quantum well light-emitting diodes,” Opt. Quantum Electron. 48, 3 (2016).
[Crossref]

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes,” J. Appl. Phys. 16, 183107 (2014).
[Crossref]

Fang, W.

F. Jiang, J. Liu, L. Wang, C. Xiong, and W. Fang, “High optical efficiency GaN based blue LED on silicon substrate,” Sci. Sin. Phys. Mech. Astron. 45, 067302 (2015).
[Crossref]

C. Xiong, F. Jiang, W. Fang, L. Wang, H. Liu, and C. Mo, “Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate,” Sci. China E 49, 313–321 (2006).
[Crossref]

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth 285, 312–317 (2005).
[Crossref]

Faulkner, G.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Feng, F.

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett. 99, 111112 (2011).
[Crossref]

Ferreira, R. X.

Gu, E.

Guo, X.

Haas, H.

He, X.

Hu, F.

P. Zou, Y. Liu, F. Wang, F. Hu, and N. Chi, “Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system,” Opt. Commun. 438, 132–140 (2018).
[Crossref]

Huang, J.

J. Huang, Q. Zheng, and B. Liu, “Laser lift-off technique and the re-utilization of GaN-based LED films grown on sapphire substrate,” Optoelectron. Lett. 4, 354–357 (2008).
[Crossref]

Huang, X.

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer,” IEEE Photon. J. 7, 7901907 (2015).
[Crossref]

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750  Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in IEEE Optical Fiber Communication Conference (2015), paper Tu2G.1.

Huang, X. L.

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

Huang, Y. F.

H. Y. Wang, Y. F. Huang, W. C. Wang, C. T. Tsai, C. H. Cheng, Y. C. Chi, and G. R. Lin, “Seawater communication with blue laser carried 16-QAM OFDM at 3.7  GBaud,” in IEEE Optical Fiber Communication Conference (2018), paper Tu2I.1.

Islam, A. R.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in International Conference on ICECE (IEEE, 2006), pp. 408–411.

Islim, M. S.

Jain, S. C.

S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: growth, characterization, and properties,” J. Appl. Phys. 87, 965–1006 (2000).
[Crossref]

Jiang, F.

J. Li, F. Wang, M. Zhao, F. Jiang, and N. Chi, “Large-coverage underwater visible light communication system based on blue-LED employing equal gain combining with integrated PIN array reception,” Appl. Opt. 58, 383–388 (2019).
[Crossref]

F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, and J. Liu, “Efficient InGaN-based yellow-light-emitting diodes,” Photon. Res. 7, 144–148 (2019).
[Crossref]

F. Wang, Y. Liu, F. Jiang, and N. Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).
[Crossref]

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Effect of V-shaped Pit area ratio on quantum efficiency of blue InGaN/GaN multiple-quantum well light-emitting diodes,” Opt. Quantum Electron. 48, 3 (2016).
[Crossref]

F. Jiang, J. Liu, L. Wang, C. Xiong, and W. Fang, “High optical efficiency GaN based blue LED on silicon substrate,” Sci. Sin. Phys. Mech. Astron. 45, 067302 (2015).
[Crossref]

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes,” J. Appl. Phys. 16, 183107 (2014).
[Crossref]

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett. 99, 111112 (2011).
[Crossref]

C. Xiong, F. Jiang, W. Fang, L. Wang, H. Liu, and C. Mo, “Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate,” Sci. China E 49, 313–321 (2006).
[Crossref]

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth 285, 312–317 (2005).
[Crossref]

X. Zhu, F. Wang, M. Shi, N. Chi, J. Liu, and F. Jiang, “10.72  Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization,” in IEEE Optical Fiber Communication Conference (2018), paper M3K.3.

Y. Zhao, C. Wang, F. Wang, Y. Liu, X. Zhu, J. Liu, F. Jiang, and N. Chi, “1.725  Gb/s underwater visible light communication system based on a silicon substrate green LED and equal gain combination receiver,” in International Conference and Exhibition on Visible Light Communications, ICEVLC (2018).

Jung, D.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Kavehrad, M.

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

Kelly, A. E.

Khalid, A. M.

G. Cossu, R. Corsini, A. M. Khalid, S. Balestrino, A. Coppelli, A. Caiti, and E. Ciaramella, “Experimental demonstration of high speed underwater visible light communications,” in 2nd International Workshop on Optical Wireless Communications (IWOW) (IEEE, 2013).

Krost, A.

A. Krost and A. Dadgar, “GaN-based optoelectronics on silicon substrates,” Mater. Sci. Eng. B 93, 77–84 (2002).
[Crossref]

Lavery, D.

Lee, K.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Li, C.

Li, J.

Liang, S.

Lin, G. R.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4  Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref]

H. Y. Wang, Y. F. Huang, W. C. Wang, C. T. Tsai, C. H. Cheng, Y. C. Chi, and G. R. Lin, “Seawater communication with blue laser carried 16-QAM OFDM at 3.7  GBaud,” in IEEE Optical Fiber Communication Conference (2018), paper Tu2I.1.

Little, T. D.

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

Liu, B.

J. Huang, Q. Zheng, and B. Liu, “Laser lift-off technique and the re-utilization of GaN-based LED films grown on sapphire substrate,” Optoelectron. Lett. 4, 354–357 (2008).
[Crossref]

Liu, H.

C. Xiong, F. Jiang, W. Fang, L. Wang, H. Liu, and C. Mo, “Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate,” Sci. China E 49, 313–321 (2006).
[Crossref]

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth 285, 312–317 (2005).
[Crossref]

Liu, J.

F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, and J. Liu, “Efficient InGaN-based yellow-light-emitting diodes,” Photon. Res. 7, 144–148 (2019).
[Crossref]

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Effect of V-shaped Pit area ratio on quantum efficiency of blue InGaN/GaN multiple-quantum well light-emitting diodes,” Opt. Quantum Electron. 48, 3 (2016).
[Crossref]

F. Jiang, J. Liu, L. Wang, C. Xiong, and W. Fang, “High optical efficiency GaN based blue LED on silicon substrate,” Sci. Sin. Phys. Mech. Astron. 45, 067302 (2015).
[Crossref]

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes,” J. Appl. Phys. 16, 183107 (2014).
[Crossref]

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett. 99, 111112 (2011).
[Crossref]

X. Zhu, F. Wang, M. Shi, N. Chi, J. Liu, and F. Jiang, “10.72  Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization,” in IEEE Optical Fiber Communication Conference (2018), paper M3K.3.

Y. Zhao, C. Wang, F. Wang, Y. Liu, X. Zhu, J. Liu, F. Jiang, and N. Chi, “1.725  Gb/s underwater visible light communication system based on a silicon substrate green LED and equal gain combination receiver,” in International Conference and Exhibition on Visible Light Communications, ICEVLC (2018).

Liu, L.

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

Liu, X.

Liu, Y.

P. Zou, Y. Liu, F. Wang, F. Hu, and N. Chi, “Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system,” Opt. Commun. 438, 132–140 (2018).
[Crossref]

F. Wang, Y. Liu, F. Jiang, and N. Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).
[Crossref]

P. Zou, Y. Liu, F. Wang, and N. Chi, “Mitigating nonlinearity characteristics of gray-coding square 8QAM in underwater VLC system,” in IEEE Asia Communications and Photonics Conference ACP (2018).

Y. Zhao, C. Wang, F. Wang, Y. Liu, X. Zhu, J. Liu, F. Jiang, and N. Chi, “1.725  Gb/s underwater visible light communication system based on a silicon substrate green LED and equal gain combination receiver,” in International Conference and Exhibition on Visible Light Communications, ICEVLC (2018).

Lu, X.

Maher, R.

Minh, H. L.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Mo, C.

F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, and J. Liu, “Efficient InGaN-based yellow-light-emitting diodes,” Photon. Res. 7, 144–148 (2019).
[Crossref]

C. Xiong, F. Jiang, W. Fang, L. Wang, H. Liu, and C. Mo, “Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate,” Sci. China E 49, 313–321 (2006).
[Crossref]

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth 285, 312–317 (2005).
[Crossref]

Narayan, J.

S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: growth, characterization, and properties,” J. Appl. Phys. 87, 965–1006 (2000).
[Crossref]

Ng, T. K.

O’Brien, D.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Oh, Y.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Ooi, B. S.

Oubei, H. M.

Pan, S.

Park, K. H.

Pearton, S. J.

S. J. Pearton, GaN and Related Materials II (CRC Press, 2000), Vol. 7.

Penty, R. V.

Pu, Y.

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth 285, 312–317 (2005).
[Crossref]

Quan, Z.

F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, and J. Liu, “Efficient InGaN-based yellow-light-emitting diodes,” Photon. Res. 7, 144–148 (2019).
[Crossref]

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Effect of V-shaped Pit area ratio on quantum efficiency of blue InGaN/GaN multiple-quantum well light-emitting diodes,” Opt. Quantum Electron. 48, 3 (2016).
[Crossref]

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes,” J. Appl. Phys. 16, 183107 (2014).
[Crossref]

Rahman, M. S.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in International Conference on ICECE (IEEE, 2006), pp. 408–411.

Rios-Müller, R.

Schmalen, L.

L. Schmalen, A. Alvarado, and R. Rios-Müller, “Performance prediction of nonbinary forward error correction in optical transmission experiments,” J. Lightwave Technol. 35, 1015–1027 (2017).
[Crossref]

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in European Conference on Optical Communication (ECOC) (IEEE, 2017), pp. 1–3.

Shafik, R. A.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in International Conference on ICECE (IEEE, 2006), pp. 408–411.

Shi, J.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer,” IEEE Photon. J. 7, 7901907 (2015).
[Crossref]

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750  Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in IEEE Optical Fiber Communication Conference (2015), paper Tu2G.1.

Shi, M.

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Express 26, 26700–26712 (2018).
[Crossref]

M. Shi, M. Zhang, F. Wang, M. Zhao, and N. Chi, “Equiprobable pre-coding PAM7 modulation for nonlinearity mitigation in underwater 2 × 1 MISO visible light communications,” J. Lightwave Technol. 36, 5188–5195 (2018).
[Crossref]

N. Chi and M. Shi, “Advanced modulation formats for underwater visible light communications (invited),” Chin. Opt. Lett. 16, 120603 (2018).
[Crossref]

X. Zhu, F. Wang, M. Shi, N. Chi, J. Liu, and F. Jiang, “10.72  Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization,” in IEEE Optical Fiber Communication Conference (2018), paper M3K.3.

Y. Zhao, M. Shi, and N. Chi, “Application of multilayer perceptron in underwater visible light communication system,” in 8th International Multidisciplinary Conference on Optofluidics, IMCO (2018).

Sun, K.

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

Sun, Z.

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

Tao, L.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer,” IEEE Photon. J. 7, 7901907 (2015).
[Crossref]

Teng, D.

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

Tsai, C. T.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4  Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref]

H. Y. Wang, Y. F. Huang, W. C. Wang, C. T. Tsai, C. H. Cheng, Y. C. Chi, and G. R. Lin, “Seawater communication with blue laser carried 16-QAM OFDM at 3.7  GBaud,” in IEEE Optical Fiber Communication Conference (2018), paper Tu2I.1.

Van Overstraeten, R.

S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: growth, characterization, and properties,” J. Appl. Phys. 87, 965–1006 (2000).
[Crossref]

Videv, S.

Viola, S.

Wang, C.

C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J. 8, 7906311 (2017).
[Crossref]

Y. Zhao, C. Wang, F. Wang, Y. Liu, X. Zhu, J. Liu, F. Jiang, and N. Chi, “1.725  Gb/s underwater visible light communication system based on a silicon substrate green LED and equal gain combination receiver,” in International Conference and Exhibition on Visible Light Communications, ICEVLC (2018).

Wang, F.

J. Li, F. Wang, M. Zhao, F. Jiang, and N. Chi, “Large-coverage underwater visible light communication system based on blue-LED employing equal gain combining with integrated PIN array reception,” Appl. Opt. 58, 383–388 (2019).
[Crossref]

M. Shi, M. Zhang, F. Wang, M. Zhao, and N. Chi, “Equiprobable pre-coding PAM7 modulation for nonlinearity mitigation in underwater 2 × 1 MISO visible light communications,” J. Lightwave Technol. 36, 5188–5195 (2018).
[Crossref]

N. Chi, Y. Zhou, S. Liang, F. Wang, J. Li, and Y. Wang, “Enabling technologies for high-speed visible light communication employing CAP modulation,” J. Lightwave Technol. 36, 510–518 (2018).
[Crossref]

P. Zou, Y. Liu, F. Wang, F. Hu, and N. Chi, “Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system,” Opt. Commun. 438, 132–140 (2018).
[Crossref]

F. Wang, Y. Liu, F. Jiang, and N. Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).
[Crossref]

P. Zou, Y. Liu, F. Wang, and N. Chi, “Mitigating nonlinearity characteristics of gray-coding square 8QAM in underwater VLC system,” in IEEE Asia Communications and Photonics Conference ACP (2018).

Y. Zhao, C. Wang, F. Wang, Y. Liu, X. Zhu, J. Liu, F. Jiang, and N. Chi, “1.725  Gb/s underwater visible light communication system based on a silicon substrate green LED and equal gain combination receiver,” in International Conference and Exhibition on Visible Light Communications, ICEVLC (2018).

X. Zhu, F. Wang, M. Shi, N. Chi, J. Liu, and F. Jiang, “10.72  Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization,” in IEEE Optical Fiber Communication Conference (2018), paper M3K.3.

Wang, G.

F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, and J. Liu, “Efficient InGaN-based yellow-light-emitting diodes,” Photon. Res. 7, 144–148 (2019).
[Crossref]

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Effect of V-shaped Pit area ratio on quantum efficiency of blue InGaN/GaN multiple-quantum well light-emitting diodes,” Opt. Quantum Electron. 48, 3 (2016).
[Crossref]

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes,” J. Appl. Phys. 16, 183107 (2014).
[Crossref]

Wang, H. Y.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4  Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref]

H. Y. Wang, Y. F. Huang, W. C. Wang, C. T. Tsai, C. H. Cheng, Y. C. Chi, and G. R. Lin, “Seawater communication with blue laser carried 16-QAM OFDM at 3.7  GBaud,” in IEEE Optical Fiber Communication Conference (2018), paper Tu2I.1.

Wang, L.

F. Jiang, J. Liu, L. Wang, C. Xiong, and W. Fang, “High optical efficiency GaN based blue LED on silicon substrate,” Sci. Sin. Phys. Mech. Astron. 45, 067302 (2015).
[Crossref]

C. Xiong, F. Jiang, W. Fang, L. Wang, H. Liu, and C. Mo, “Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate,” Sci. China E 49, 313–321 (2006).
[Crossref]

Wang, W. C.

H. Y. Wang, Y. F. Huang, W. C. Wang, C. T. Tsai, C. H. Cheng, Y. C. Chi, and G. R. Lin, “Seawater communication with blue laser carried 16-QAM OFDM at 3.7  GBaud,” in IEEE Optical Fiber Communication Conference (2018), paper Tu2I.1.

Wang, X.

Wang, Y.

N. Chi, Y. Zhou, S. Liang, F. Wang, J. Li, and Y. Wang, “Enabling technologies for high-speed visible light communication employing CAP modulation,” J. Lightwave Technol. 36, 510–518 (2018).
[Crossref]

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer,” IEEE Photon. J. 7, 7901907 (2015).
[Crossref]

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750  Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in IEEE Optical Fiber Communication Conference (2015), paper Tu2G.1.

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750  Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in IEEE Optical Fiber Communication Conference (2015), paper Tu2G.1.

Watson, S.

White, I. H.

Willander, M.

S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: growth, characterization, and properties,” J. Appl. Phys. 87, 965–1006 (2000).
[Crossref]

Winzer, P. J.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in European Conference on Optical Communication (ECOC) (IEEE, 2017), pp. 1–3.

Won, E. T.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Wu, T. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4  Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref]

Wu, X.

Xie, E.

Xiong, C.

F. Jiang, J. Liu, L. Wang, C. Xiong, and W. Fang, “High optical efficiency GaN based blue LED on silicon substrate,” Sci. Sin. Phys. Mech. Astron. 45, 067302 (2015).
[Crossref]

C. Xiong, F. Jiang, W. Fang, L. Wang, H. Liu, and C. Mo, “Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate,” Sci. China E 49, 313–321 (2006).
[Crossref]

Xu, L.

Yu, H. Y.

C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J. 8, 7906311 (2017).
[Crossref]

Zeng, L.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Zhang, J.

F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, and J. Liu, “Efficient InGaN-based yellow-light-emitting diodes,” Photon. Res. 7, 144–148 (2019).
[Crossref]

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett. 99, 111112 (2011).
[Crossref]

Zhang, M.

Zhang, X.

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

Zhao, M.

Zhao, Y.

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Express 26, 26700–26712 (2018).
[Crossref]

Y. Zhao, M. Shi, and N. Chi, “Application of multilayer perceptron in underwater visible light communication system,” in 8th International Multidisciplinary Conference on Optofluidics, IMCO (2018).

Y. Zhao, C. Wang, F. Wang, Y. Liu, X. Zhu, J. Liu, F. Jiang, and N. Chi, “1.725  Gb/s underwater visible light communication system based on a silicon substrate green LED and equal gain combination receiver,” in International Conference and Exhibition on Visible Light Communications, ICEVLC (2018).

Zheng, C.

Zheng, Q.

J. Huang, Q. Zheng, and B. Liu, “Laser lift-off technique and the re-utilization of GaN-based LED films grown on sapphire substrate,” Optoelectron. Lett. 4, 354–357 (2008).
[Crossref]

Zhou, Y.

N. Chi, Y. Zhou, S. Liang, F. Wang, J. Li, and Y. Wang, “Enabling technologies for high-speed visible light communication employing CAP modulation,” J. Lightwave Technol. 36, 510–518 (2018).
[Crossref]

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett. 99, 111112 (2011).
[Crossref]

Zhu, X.

X. Zhu, F. Wang, M. Shi, N. Chi, J. Liu, and F. Jiang, “10.72  Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization,” in IEEE Optical Fiber Communication Conference (2018), paper M3K.3.

Y. Zhao, C. Wang, F. Wang, Y. Liu, X. Zhu, J. Liu, F. Jiang, and N. Chi, “1.725  Gb/s underwater visible light communication system based on a silicon substrate green LED and equal gain combination receiver,” in International Conference and Exhibition on Visible Light Communications, ICEVLC (2018).

Zhu, Y. J.

C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J. 8, 7906311 (2017).
[Crossref]

Zou, P.

P. Zou, Y. Liu, F. Wang, F. Hu, and N. Chi, “Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system,” Opt. Commun. 438, 132–140 (2018).
[Crossref]

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Express 26, 26700–26712 (2018).
[Crossref]

P. Zou, Y. Liu, F. Wang, and N. Chi, “Mitigating nonlinearity characteristics of gray-coding square 8QAM in underwater VLC system,” in IEEE Asia Communications and Photonics Conference ACP (2018).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett. 99, 111112 (2011).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Photon. J. (3)

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer,” IEEE Photon. J. 7, 7901907 (2015).
[Crossref]

Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, and G. Wang, “A power-type single GaN-based blue LED with improved linearity for 3  Gb/s free-space VLC without pre-equalization,” IEEE Photon. J. 8, 7904308 (2016).
[Crossref]

C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J. 8, 7906311 (2017).
[Crossref]

IEEE Wireless Commun. (1)

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

J. Appl. Phys. (2)

S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: growth, characterization, and properties,” J. Appl. Phys. 87, 965–1006 (2000).
[Crossref]

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes,” J. Appl. Phys. 16, 183107 (2014).
[Crossref]

J. Cryst. Growth (1)

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth 285, 312–317 (2005).
[Crossref]

J. Lightwave Technol. (4)

Mater. Sci. Eng. B (1)

A. Krost and A. Dadgar, “GaN-based optoelectronics on silicon substrates,” Mater. Sci. Eng. B 93, 77–84 (2002).
[Crossref]

Opt. Commun. (2)

F. Wang, Y. Liu, F. Jiang, and N. Chi, “High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception,” Opt. Commun. 425, 106–112 (2018).
[Crossref]

P. Zou, Y. Liu, F. Wang, F. Hu, and N. Chi, “Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system,” Opt. Commun. 438, 132–140 (2018).
[Crossref]

Opt. Express (3)

Opt. Quantum Electron. (1)

Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, “Effect of V-shaped Pit area ratio on quantum efficiency of blue InGaN/GaN multiple-quantum well light-emitting diodes,” Opt. Quantum Electron. 48, 3 (2016).
[Crossref]

Optoelectron. Lett. (1)

J. Huang, Q. Zheng, and B. Liu, “Laser lift-off technique and the re-utilization of GaN-based LED films grown on sapphire substrate,” Optoelectron. Lett. 4, 354–357 (2008).
[Crossref]

Photon. Res. (2)

Proc. SPIE (1)

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Sci. China E (1)

C. Xiong, F. Jiang, W. Fang, L. Wang, H. Liu, and C. Mo, “Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate,” Sci. China E 49, 313–321 (2006).
[Crossref]

Sci. Rep. (1)

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4  Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref]

Sci. Sin. Phys. Mech. Astron. (1)

F. Jiang, J. Liu, L. Wang, C. Xiong, and W. Fang, “High optical efficiency GaN based blue LED on silicon substrate,” Sci. Sin. Phys. Mech. Astron. 45, 067302 (2015).
[Crossref]

Other (10)

Y. Zhao, M. Shi, and N. Chi, “Application of multilayer perceptron in underwater visible light communication system,” in 8th International Multidisciplinary Conference on Optofluidics, IMCO (2018).

P. Zou, Y. Liu, F. Wang, and N. Chi, “Mitigating nonlinearity characteristics of gray-coding square 8QAM in underwater VLC system,” in IEEE Asia Communications and Photonics Conference ACP (2018).

H. Y. Wang, Y. F. Huang, W. C. Wang, C. T. Tsai, C. H. Cheng, Y. C. Chi, and G. R. Lin, “Seawater communication with blue laser carried 16-QAM OFDM at 3.7  GBaud,” in IEEE Optical Fiber Communication Conference (2018), paper Tu2I.1.

S. J. Pearton, GaN and Related Materials II (CRC Press, 2000), Vol. 7.

X. Zhu, F. Wang, M. Shi, N. Chi, J. Liu, and F. Jiang, “10.72  Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization,” in IEEE Optical Fiber Communication Conference (2018), paper M3K.3.

Y. Zhao, C. Wang, F. Wang, Y. Liu, X. Zhu, J. Liu, F. Jiang, and N. Chi, “1.725  Gb/s underwater visible light communication system based on a silicon substrate green LED and equal gain combination receiver,” in International Conference and Exhibition on Visible Light Communications, ICEVLC (2018).

G. Cossu, R. Corsini, A. M. Khalid, S. Balestrino, A. Coppelli, A. Caiti, and E. Ciaramella, “Experimental demonstration of high speed underwater visible light communications,” in 2nd International Workshop on Optical Wireless Communications (IWOW) (IEEE, 2013).

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in European Conference on Optical Communication (ECOC) (IEEE, 2017), pp. 1–3.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in International Conference on ICECE (IEEE, 2006), pp. 408–411.

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750  Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in IEEE Optical Fiber Communication Conference (2015), paper Tu2G.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) Schematic of GaN-based LED epitaxial structure on the Si substrate, (b) vertical structure of the LED chip on the Si substrate, (c) SEM image of V-shaped pits on the surface of MQWs, and (d) SEM image of texture surface.
Fig. 2.
Fig. 2. Schematic of (a) bracket structure and (b) chip layout; (c) SEM and (d) optical microscope images of the packaged device; and (e) the light distribution curve of the LED lamp (the unit of the numbers on the circle is degree).
Fig. 3.
Fig. 3. (a) Relative light output power versus current, (b) relative wall plug efficiency versus current density, and (c) relative luminous efficiency versus current density.
Fig. 4.
Fig. 4. EL spectra with different injection currents for (a) red chip, (b) green chip, (c) blue chip, (d) yellow chip, and (e) cyan chip.
Fig. 5.
Fig. 5. CIE diagrams of CCT versus driving currents for (a) red chip, (b) green chip, (c) blue chip, (d) yellow chip, and (e) cyan chip.
Fig. 6.
Fig. 6. Experimental setup of the UVLC system.
Fig. 7.
Fig. 7. Measured forward transmission gains (a) without pre-equalizer and (b) with pre-equalizer.
Fig. 8.
Fig. 8. Log10(BER) versus bias current and signal Vpp for (a) red chip, (b) green chip, (c) blue chip, (d) yellow chip, and (e) cyan chip.
Fig. 9.
Fig. 9. (a) CIE diagram showing the chromaticity coordinates of RGBYC LED operated at (i) the optimal transmission working point and (ii) the good illumination point; optical spectra at (b) the optimal transmission working point and (c) the good illumination point; (d) AIR versus bandwidth; insets, the highest data rate points for (iii) red chip, (iv) green chip, (v) blue chip, (vi) yellow chip, and (vii) cyan chip.
Fig. 10.
Fig. 10. Measured electrical spectra for red chip using 600 MHz bandwidth (a) with and (b) without pre-equalizer, for (c) red chip, (d) green chip, (e) blue chip, (f) yellow chip, and (g) cyan chip with pre-equalizer and respective optimum bandwidth applying 64QAM-DMT modulation; electrical spectra for (h) red chip, (i) green chip, (j) blue chip, (k) yellow chip, and (l) cyan chip with pre-equalizer applying bit-loading-DMT modulation.
Fig. 11.
Fig. 11. AIR versus bandwidth; insets, the constellation diagrams at point (i).
Fig. 12.
Fig. 12. Bit allocation for (a) red chip, (b) green chip, (c) blue chip, (d) yellow chip, and (e) cyan chip.

Tables (1)

Tables Icon

Table 1. Recent Achievements Applying LEDs Based on a Si Substrate

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

xn=k=0N1Xkej2πnk/N,
Xk={Xk,k=0,1,,N/21,XNk*,k=N/2,N/2+1,,N1,
Yk=n=0N1ynej2πnk/N,
HEST=YTS/XTS,
HI(k)=1min(kmax,k+m)max(kmin,km)+1k=kmk+mHEST(k),
YEQU=Y/HI.
FB/A(b|a)=12πσn2×e|ba|22σn2,
l=log2M.
G1Rj=1Ri=1llog2aZcj,iFB|A(bj|a)PA(a)aZFB|A(bj|a)PA(a)aZPA(a)log2PA(a),
AIR=G×BW,
EVM=1Ee=1E|DeD0,e|21Ee=1E|D0,e|2,SNR1EVM2,
PE2×(11/α)log2α×Q[(3log2αα21)×2EVM2×log2M],
Q(β)=β+12πet22dt.
GBL=i=1IP(i)×Gi,
AIRBL=GBL×BW,

Metrics