Abstract

A fabrication process allowing for the production of periodically poled lithium niobate (PPLN) photonic devices with any domain pattern and unit size down to 200 nm is developed by combining semiconductor fabrication techniques and piezo-force-microscopy tips polarization. Based on this fabrication process, PPLN microdisk resonators with quality factors of 8×104 were fabricated from a Z-cut lithium niobate film. Second-harmonic generation (SHG) utilizing d33 in the whole cavity was demonstrated in a PPLN microdisk with a 2 μm-spatial-period radial domain pattern. The SHG conversion efficiency was measured to be 1.44×105  mW1. This work paves the way to fabricate complex PPLN photonic devices and to obtain efficient nonlinear optical effects that have wide applications in both classical and quantum optics.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W

Juanjuan Lu, Joshua B. Surya, Xianwen Liu, Alexander W. Bruch, Zheng Gong, Yuntao Xu, and Hong X. Tang
Optica 6(12) 1455-1460 (2019)

Sum-frequency generation in on-chip lithium niobate microdisk resonators

Zhenzhong Hao, Jie Wang, Shuqiong Ma, Wenbo Mao, Fang Bo, Feng Gao, Guoquan Zhang, and Jingjun Xu
Photon. Res. 5(6) 623-628 (2017)

Second harmonic generation in periodically poled lithium niobate waveguides with stitching errors

Maxim Neradovskiy, Elizaveta Neradovskaia, Dmitry Chezganov, Evgeny Vlasov, Vladimir Ya. Shur, Hervé Tronche, Florent Doutre, Getachew Ayenew, Pascal Baldi, Marc De Micheli, and Carlos Montes
J. Opt. Soc. Am. B 35(2) 331-336 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
    [Crossref]
  2. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
    [Crossref]
  3. M. Wang, Y. Xu, Z. Fang, L. Yang, W. Peng, C. Wei, L. Qiao, J. Lin, F. Wei, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
    [Crossref]
  4. J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
    [Crossref]
  5. J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator,” Opt. Express 19, 24139–24146 (2011).
    [Crossref]
  6. J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
    [Crossref]
  7. J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
    [Crossref]
  8. L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
    [Crossref]
  9. D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whispering-gallery-mode resonator,” New J. Phys. 16, 053025 (2014).
    [Crossref]
  10. S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, and X. Chen, “Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes,” Opt. Lett. 44, 1456–1459 (2019).
    [Crossref]
  11. C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
    [Crossref]
  12. A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett. 32, 157–159 (2007).
    [Crossref]
  13. R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
    [Crossref]
  14. J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
    [Crossref]
  15. X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
    [Crossref]
  16. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [Crossref]
  17. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
    [Crossref]
  18. J. Y. Chen, Z. H. Ma, Y. M. Sua, and Y. P. Huang, “Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings,” Optica 6, 1244–1245 (2019).
    [Crossref]
  19. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
    [Crossref]
  20. T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
    [Crossref]
  21. Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
    [Crossref]
  22. R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, and H. Zappe, “Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries,” Optica 5, 872–875 (2018).
    [Crossref]
  23. J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Ultra-efficient frequency conversion in a periodically poled thin film lithium niobate microring resonator,” in Frontiers in Optics (Optical Society of America, 2019), paper FTu6B.2.
  24. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1, 459–462 (2007).
    [Crossref]
  25. J. B. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A 72, 023810 (2005).
    [Crossref]
  26. V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, “Giant tunnel electroresistance for non-destructive readout of ferroelectric states,” Nature 460, 81–84 (2009).
    [Crossref]
  27. J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics (2016), paper STh3P.1.
  28. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
    [Crossref]
  29. D. Haertle, “Domain patterns for quasi-phase matching in whispering-gallery modes,” J. Opt. 12, 035202 (2010).
    [Crossref]
  30. A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
    [Crossref]
  31. X. Guo, C. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
    [Crossref]

2019 (6)

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, and X. Chen, “Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes,” Opt. Lett. 44, 1456–1459 (2019).
[Crossref]

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

J. Y. Chen, Z. H. Ma, Y. M. Sua, and Y. P. Huang, “Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings,” Optica 6, 1244–1245 (2019).
[Crossref]

2018 (5)

2017 (1)

2016 (2)

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

X. Guo, C. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
[Crossref]

2015 (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

2014 (1)

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whispering-gallery-mode resonator,” New J. Phys. 16, 053025 (2014).
[Crossref]

2011 (3)

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator,” Opt. Express 19, 24139–24146 (2011).
[Crossref]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

2010 (2)

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

D. Haertle, “Domain patterns for quasi-phase matching in whispering-gallery modes,” J. Opt. 12, 035202 (2010).
[Crossref]

2009 (1)

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, “Giant tunnel electroresistance for non-destructive readout of ferroelectric states,” Nature 460, 81–84 (2009).
[Crossref]

2007 (3)

2005 (1)

J. B. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A 72, 023810 (2005).
[Crossref]

2004 (1)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

1964 (1)

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Barthelemy, A.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, “Giant tunnel electroresistance for non-destructive readout of ferroelectric states,” Nature 460, 81–84 (2009).
[Crossref]

Beckmann, T.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Bibes, M.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, “Giant tunnel electroresistance for non-destructive readout of ferroelectric states,” Nature 460, 81–84 (2009).
[Crossref]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Bo, F.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref]

Bonaus, S.

Bond, W. L.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[Crossref]

Bouzehouane, K.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, “Giant tunnel electroresistance for non-destructive readout of ferroelectric states,” Nature 460, 81–84 (2009).
[Crossref]

Boyd, G. D.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[Crossref]

Breunig, I.

R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, and H. Zappe, “Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries,” Optica 5, 872–875 (2018).
[Crossref]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Bruch, A. W.

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Ultra-efficient frequency conversion in a periodically poled thin film lithium niobate microring resonator,” in Frontiers in Optics (Optical Society of America, 2019), paper FTu6B.2.

Buse, K.

R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, and H. Zappe, “Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries,” Optica 5, 872–875 (2018).
[Crossref]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Camacho, R. M.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics (2016), paper STh3P.1.

Canalias, C.

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1, 459–462 (2007).
[Crossref]

Cao, Q.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Carmon, T.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator,” Opt. Express 19, 24139–24146 (2011).
[Crossref]

Chen, J. Y.

Chen, X.

Cheng, Y.

S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, and X. Chen, “Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes,” Opt. Lett. 44, 1456–1459 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, L. Yang, W. Peng, C. Wei, L. Qiao, J. Lin, F. Wei, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Chu, W.

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

Desiatov, B.

Douglas, J. K.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics (2016), paper STh3P.1.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Eichenfield, M.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics (2016), paper STh3P.1.

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Enouz-Vedrenne, S.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, “Giant tunnel electroresistance for non-destructive readout of ferroelectric states,” Nature 460, 81–84 (2009).
[Crossref]

Fang, W.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Fang, Z.

S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, and X. Chen, “Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes,” Opt. Lett. 44, 1456–1459 (2019).
[Crossref]

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, L. Yang, W. Peng, C. Wei, L. Qiao, J. Lin, F. Wei, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Fejer, M. M.

Frank, I. W.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics (2016), paper STh3P.1.

Friedmann, T. A.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics (2016), paper STh3P.1.

Fürst, J. U.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Fusil, S.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, “Giant tunnel electroresistance for non-destructive readout of ferroelectric states,” Nature 460, 81–84 (2009).
[Crossref]

Gao, A.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Gao, F.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Gao, X.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Garcia, V.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, “Giant tunnel electroresistance for non-destructive readout of ferroelectric states,” Nature 460, 81–84 (2009).
[Crossref]

Gong, Q.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref]

Gong, Z.

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Ultra-efficient frequency conversion in a periodically poled thin film lithium niobate microring resonator,” in Frontiers in Optics (Optical Society of America, 2019), paper FTu6B.2.

Guo, X.

Haertle, D.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

D. Haertle, “Domain patterns for quasi-phase matching in whispering-gallery modes,” J. Opt. 12, 035202 (2010).
[Crossref]

Hao, Z.

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

He, Y.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Herr, S. J.

Hu, H.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
[Crossref]

Huang, Y. P.

Huang, Y.-P.

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whispering-gallery-mode resonator,” New J. Phys. 16, 053025 (2014).
[Crossref]

Ilchenko, V. S.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

Jankowski, M.

Jarrahi, M.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator,” Opt. Express 19, 24139–24146 (2011).
[Crossref]

Jia, Y.

Joannopoulos, J. D.

Johnson, S. G.

Khurgin, J. B.

J. B. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A 72, 023810 (2005).
[Crossref]

Kowligy, A. S.

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whispering-gallery-mode resonator,” New J. Phys. 16, 053025 (2014).
[Crossref]

Kumar, P.

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whispering-gallery-mode resonator,” New J. Phys. 16, 053025 (2014).
[Crossref]

Langrock, C.

Lassen, M.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Leuchs, G.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Li, M.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Liang, H.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Lin, J.

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, L. Yang, W. Peng, C. Wei, L. Qiao, J. Lin, F. Wei, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Lin, Q.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Ling, J.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Linnenbank, H.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Lipson, M.

Liu, S.

Liu, X.

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Ultra-efficient frequency conversion in a periodically poled thin film lithium niobate microring resonator,” in Frontiers in Optics (Optical Society of America, 2019), paper FTu6B.2.

Liu, Y.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Loncar, M.

Lu, J.

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Ultra-efficient frequency conversion in a periodically poled thin film lithium niobate microring resonator,” in Frontiers in Optics (Optical Society of America, 2019), paper FTu6B.2.

Luo, R.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Lyu, X.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Ma, Z. H.

Maleki, L.

A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett. 32, 157–159 (2007).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

Mao, W.

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Marandi, A.

Marquardt, C.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Mathur, N. D.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, “Giant tunnel electroresistance for non-destructive readout of ferroelectric states,” Nature 460, 81–84 (2009).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett. 32, 157–159 (2007).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

Miller, R. C.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[Crossref]

Mohageg, M.

Moore, J.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator,” Opt. Express 19, 24139–24146 (2011).
[Crossref]

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics (2016), paper STh3P.1.

Nassau, K.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[Crossref]

Ni, J.

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Pasiskevicius, V.

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1, 459–462 (2007).
[Crossref]

Peng, W.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Qiao, L.

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, L. Yang, W. Peng, C. Wei, L. Qiao, J. Lin, F. Wei, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Qiu, C.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Rodriguez, A.

Savage, A.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[Crossref]

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett. 32, 157–159 (2007).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

Soljacic, M.

Steigerwald, H.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Stern, B.

Strekalov, D. V.

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whispering-gallery-mode resonator,” New J. Phys. 16, 053025 (2014).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett. 32, 157–159 (2007).
[Crossref]

Sturman, B.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Sua, Y. M.

Surya, J. B.

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Ultra-efficient frequency conversion in a periodically poled thin film lithium niobate microring resonator,” in Frontiers in Optics (Optical Society of America, 2019), paper FTu6B.2.

Tang, H. X.

X. Guo, C. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
[Crossref]

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Ultra-efficient frequency conversion in a periodically poled thin film lithium niobate microring resonator,” in Frontiers in Optics (Optical Society of America, 2019), paper FTu6B.2.

Tomes, M.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator,” Opt. Express 19, 24139–24146 (2011).
[Crossref]

Wang, C.

Wang, J.

Wang, L.

Wang, M.

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, L. Yang, W. Peng, C. Wei, L. Qiao, J. Lin, F. Wei, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Wang, Z.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Wei, C.

Wei, F.

Werner, C. S.

Wolf, R.

Wu, R.

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

Xiao, Y.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y. Xiao, “High-Q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref]

Xu, J.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Xu, Y.

M. Wang, Y. Xu, Z. Fang, L. Yang, W. Peng, C. Wei, L. Qiao, J. Lin, F. Wei, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Ultra-efficient frequency conversion in a periodically poled thin film lithium niobate microring resonator,” in Frontiers in Optics (Optical Society of America, 2019), paper FTu6B.2.

Yang, L.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

M. Wang, Y. Xu, Z. Fang, L. Yang, W. Peng, C. Wei, L. Qiao, J. Lin, F. Wei, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref]

Yao, N.

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

Ye, X.

Yu, M.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
[Crossref]

Zappe, H.

Zhang, G.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Zhang, J.

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

Zhang, L.

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

Zhang, M.

Zhang, X.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Zheng, Y.

Zhu, R.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
[Crossref]

Zou, C.

Appl. Phys. Lett. (2)

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[Crossref]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

J. Opt. (1)

D. Haertle, “Domain patterns for quasi-phase matching in whispering-gallery modes,” J. Opt. 12, 035202 (2010).
[Crossref]

Nat. Commun. (1)

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
[Crossref]

Nat. Photonics (2)

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1, 459–462 (2007).
[Crossref]

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13, 21–24 (2019).
[Crossref]

Nature (1)

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes, “Giant tunnel electroresistance for non-destructive readout of ferroelectric states,” Nature 460, 81–84 (2009).
[Crossref]

New J. Phys. (1)

D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, and P. Kumar, “Optical sum-frequency generation in a whispering-gallery-mode resonator,” New J. Phys. 16, 053025 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (4)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Phys. Rev. A (1)

J. B. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A 72, 023810 (2005).
[Crossref]

Phys. Rev. Appl. (2)

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, “Phase-matched second-harmonic generation in an on-chip microresonator,” Phys. Rev. Appl. 6, 014002 (2016).
[Crossref]

Phys. Rev. Lett. (4)

J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, and L. Qiao, “Broadband quasi-phase-matched harmonic generation in an on-chip LiNbO3 monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. 122, 173903 (2019).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref]

Sci. China: Phys. Mech. Astron. (2)

Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Periodically poled lithium niobate whispering gallery mode microcavities on a chip,” Sci. China: Phys. Mech. Astron. 61, 114211 (2018).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China: Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Other (2)

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Ultra-efficient frequency conversion in a periodically poled thin film lithium niobate microring resonator,” in Frontiers in Optics (Optical Society of America, 2019), paper FTu6B.2.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in Conference on Lasers and Electro-Optics (2016), paper STh3P.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Flow diagram depicting the fabrication process of the PPLN microdisk resonators.
Fig. 2.
Fig. 2. Characteristics of a series of PPLN microdevices. (a) PFM image of the logo of Nankai University. (b) PPLN strips with 100 nm width and 100 nm distance. (c) PFM image of a PPLN microdisk without HF etching. (d) The measured Q factor of the PPLN microdisk. The inset represents the optical microscope image of a typical PPLN microdisk resonator. (e) Transmission spectrum of the resonator from 1540 to 1550 nm, showing the FSR of the pump mode.
Fig. 3.
Fig. 3. Experimental setup for nonlinear optical experiments in PPLN microdisk resonators. PM, power meter; FPC, fiber polarization controller; AFG, arbitrary function generator; PD, photodetector.
Fig. 4.
Fig. 4. Characteristics of the WGMs involved in the SHG process. (a) Spectra of the pump (blue) and the generated nonlinear signal (red); the insets represent the simulated optical modes of the pump and the signal. (b) Relationship between the wavelength and the azimuthal quantum number of the pump and the signal modes.
Fig. 5.
Fig. 5. Transmission (black) and scattering spectra polarized horizontally (blue) and vertically (red) for the (a) pump and (b) signal.
Fig. 6.
Fig. 6. Conversion efficiency of the SHG signal in experiment and theory. (a) The conversion efficiency at low pump power detected in the experiment (black empty squares) and fitted in theory (red line). (b) Theoretical conversion efficiency showing the saturation under strong pump.
Fig. 7.
Fig. 7. (a) Schematic draft of an eccentric poling structure, where p represents the offset of the poling pattern with respect to the center of the resonator. (b) The effective nonlinear coefficient versus the period number with a chirp in the domain period, caused by a shift of the poling pattern with a 0.3 μm offset.
Fig. 8.
Fig. 8. Transmission spectra of the PPLN microdisk coupled with a tapered fiber and their Lorentz fits for the (a) pump and (b) signal.
Fig. 9.
Fig. 9. Transmission spectra of the used PPLN microdisk and the attributed quantum numbers for each mode in the (a) 1550 nm band and (b) 780 nm band.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

da1dt=(iΩ1κ01κe1)a1+2κe1s+iω1β1a1*a2,da2dt=(iΩ2κ02κe2)a2+iω2β2|a1|2,
β1=14d3xΣijkεχijk(2)[E1i*(E2jE1k*+E1j*E2k)](d3xε|E1|2)(d3xε|E2|2)1/2,
β2=14d3xΣijkεχijk(2)E2i*E1jE1k(d3xε|E1|2)(d3xε|E2|2)1/2.
dadt=(iΩκ0κe)a+2κes,
t=s+2κea.
T=|t|2/|s|2=|1+2κeiΩκ0κe|2.

Metrics